У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент





на неї. Але тут важливий лише аспект поведінки системи після того, як її невелика частина на короткий час виводиться з термодинамічної рівноваги. Як бачимо, у рівноважній системі флуктуації приречені на розсмоктування. Так роль флуктуацій є зрозумілою в класичній термодинаміці, яка не знала ніяких механізмів, що дозволяли б їм підсилюватися й породжувати нові стани системи і її нові структури.

Разом з тим, морська поверхня здатна хвилеподібно структуруватися, породжуючи просторово-часовий порядок із закономірностями на зразок знаменитого "дев'ятого валу". Але для цього необхідно постійно і на великій площі виводити її з термодинамічної рівноваги. Це й робить сильний вітер. За умови такого зовнішнього підведення енергії в гру вступають закони поширення й резонансного посилення хвиль на водній поверхні — внутрішні резерви її структурування. У теорії дисипативних структур структурування пов'язують зі зниженням симетрії системи. У випадку водної поверхні це очевидно. її симетрія максимальна в стані безструктурної рівноваги, коли в ній немає ніякого переважного напрямку. Ця симетрія наочно знижується в штормовому морі, на поверхні якого хвильові структури орієнтовані в новому напрямку.

Тепер уявімо, що ми перебуваємо в селі в другій половині спекотного липневого дня. Незважаючи на вітер, відчувається задуха. Сусід, у якого є свій "покажчик погоди" — давній перелом ноги — запевняє: протягом найближчих двох годин буде гроза. Але звідкіля їй узятися, коли на білястому небі від краю і до краю — ні хмарини? Тільки дим від труб могутньої ТЕЦ на обрії, кілометрів за 20 від нас. Проте через годину ми чуємо віддалене гуркотіння грому. Непомітно, "з нічого" у районі ТЕЦ виникла хмаринка, від якої до землі простягліїся видимі струмочки дощу. "Хмаринка з підвітряного боку, — думаєте ви. — її віднесе від нас геть". Але хмаринка ця поводиться зовсім інакше. Вона розпливається по небу, як пляма розлитого вина по скатертині І йде на нас проти вітру. Через півгодини вона перетворилася на могутню хмару з градовою "наковальнею" на висоті близько 8 кілометрів. І з її вже не струмки дощику виливаються, а стіною ллє злива. У землю втикаються стріли блискавок, лунає гарматне ревіння грому. Далі — більше. Уже над нашою головою на очах згущуються хмари. От загриміло на іншому кінщ" неба: там "з нічого" за якісь півгодини утворився свій грозовий осередок. От уперше блиснуло й гримнуло десь поруч. Швидше в будинок! Ще через 20 хвилин день перетворюється на сутінки. Усе навколо блискає і гримить, шаленіє злива зі шквалом, сиплеться град. Через годину буйство стихії минає. Злива

стихає, починається дрібний доні без грози, моторошні чорні хмарища, що клубочуться над нами, перетворюються на аморфні шаруваті хмари. Нарешті, і ті якось непомітно розсіюються. До вечора від них залишається лише безструктурний туман, що у низинах затримається всю ніч.

У даному випадку внутрішній потенціал структуроутворення інший — прихована теплота конденсації перенасиченої пари в полі тяжіння Землі. Вона розподілена у всьому об'ємі передгрозової атмосфери. Температури, необхідні для конденсації пари, постійно виникають і зникають у всьому об'ємі у вигляді ефемерних флуктуацій. Картина мерехтіння цих флуктуацій подібна до картини дзеркальної водної поверхні під дрібним дощиком: адже кожне джерело згасаючих хвиль у другому випадку — це теж аналог флуктуації. Тільки тепер температурні флуктуації охоплюють увесь об'єм речовини. Кінетична теорія газів Максвелла — Больцмана дозволяє розрахувати їх інтенсивності й частоту виникнення, однак далі від цього вона не йде. Але, з погляду теорії дисипативних структур, передгрозова атмосфера цілком готова до того, щоб ці флуктуації, одержавши підтримку ззовні, стали господарями становища й породили новий, складно структурований стан термодинамічної системи.

Для цього потрібний лише невеликий зовнішній поштовх, який остаточно виведе її з термодинамічної рівноваги. У даному випадку його спричинив дим ТЕЦ. Відомо, що частинки сажі в повітрі інтенсифікують процеси конденсації пари в багато разів. (Саме тому над великими індустріальними містами в середньому випадає на третину більше опадів, ніж над їхніми околицями.) Але можливі й інші варіанти "спускового механізму". Наприклад, сільські хлопчаки підпалили в безпечному місці цілий штабель старих автопокришок, улаштувавши багаття з чорним димом до небес. Або горить торф'яне болото. Чи пролетів літак з вихлопом двигунів, викинувши кіптяву в атмосферу. Чи очманіла наденергійна частинка космічного проміння породила в атмосфері зливу з мільярдів вторинних електронів і мезонів, які у великому об'ємі багаторазово інтенсифікували конденсацію.

А далі конденсація починає розвивати саме себе за рахунок усе більш інтенсивного виділення прихованої теплоти переходу "пара — рідина". Ця теплота породжує висхідні конвективні потоки повітря. Вони виносять величезні маси перенасиченої пари в більш холодні області атмосфери, де знижені температури знов-таки багаторазово інтенсифікують процес конденсації. Він захоплює такі висоти, яким у горах відповідає зона вічних снігів і льодів. Тут крапельки туману стають кристаликами льоду, а ті, у свою чергу, діють як каталізатори подальшої конденсації: Над структурами купчасто-дощової хмари виростає характерна розмита структура градової "кувалди". Повна просторова симетрія пересиченої пари порушилася, з неї утворилися видимі хмарні структури, чітко орієнтовані в просторі. Але в цій системі не припиняються й непомітні процеси формування нерівноважної системи електричних потенціалів. Видимими для спостерігачів є лише акти їх вирівнювання — розряди блискавок між хмарами й із хмар у землю. Полинули потоки довгу. Це означає подальше зниження рівня симетрії, подальше структурування парорідинної системи в просторі. У велику охолоджену зону за рахунок променистого теплообміну ринуло тепло з віддалених областей, які також почали інтенсивно охолоджуватися. І от уже формуються нові грозові осередки. Незабаром вони об'єднуються й починається сильна місцева гроза. Земне поле тяжіння перетворило приховану теплоту конденсації безструктурної пари на могутній структуротвірний потенціал, і тепер його реалізовано повною мірою. З його допомогою температурні флуктуації виявилися здатними подолати змертвілу рутинність другого начала Термодинаміки.

Але друге начало, нарешті, бере своє: гроза "видихається", хмари, що вигадливо клубочуться, у кінцевому підсумку перетворюються на безструктурний нічний туман. У даній місцевості й у даний день другий початок термодинаміки тріумфує. Але атмосфера над даною місцевістю — система відкрита, коли йдеться про речовину. Це означає, що вона обмінюється речовиною з іншими системами. І вже завтра з інших місцевостей сюди можуть надійти нові величезні маси пересиченої пари. І тоді описаний синергетичний механізм утворення структур так чи інакше знову буде запущено. Сам той факт, що він працює стільки ж мільярдів років, скільки гримлять над Землею місцеві грози, говорить про те, що це — могутній механізм. Ця схожість повністю відповідає універсальності другого начала термодинаміки.

Колишня абсолютизація останнього в наш час здається наївною. У тільки що розглянутому прикладі яскраво виявляється основний принцип кібернетичної причинності: малий зовнішній вплив спричинює значні наслідки. Розглянута система неживої природи є по-справжньому кібернетичною. її розвитком керує принцип позитивного зворотного зв'язку за сценарієм ланцюгової реакції процесу конденсації перенасиченої пари. У стабілізації структур, що утворюються, важливу роль відіграють негативні зворотні зв'язки. Зокрема, опускання до землі охолоджених мас повітря породжує могутні висхідні повітряні потоки. Вони не дають охолодженому повітрю досягнути землі й втягують його у складний процес структуроутворення, який із землі ми спостерігається як розростання купчасто-дощових хмар. Злива остаточно стабілізує теплообмін між землею та атмосферою і підтримує динамічну рівновагу протягом півгодини й більше. Це суто кібернетичні процеси. Але синергетика, на відміну від кібернетики Вінера — Шеннона, не задовільняється їх абстрактно-математичним описом, який усувається від конкретних фізичних, хімічних та інших механізмів їх реалізації. Навпаки, основну увагу вона приділяє саме цим конкретним механізмам. І в результаті виявляє закономірності самоорганізації кібернетичних систем, їх внутрішньої активності та саморозвитку.

Отже, маємо завдяки розглянутому вище прикладу світоглядний наслідок вельми загального характеру. Якщо система внутрішньо не готова до поступального розвитку, якщо вона перебуває в самодостатній рівновазі, а не на межі її втрати, то навіть грандіозні за масштабами й зусиллями впливи на неї не дадуть результату. Так, якщо атмосфера не перенасичена парою, то навіть виверження вулкана не спровокує місцевої грози. Якщо ж система близька до порога виходу з термодинамічної рівноваги, то досить найменшого впливу, щоб почався процес утворення й саморозвитку складних структур. Так, у перенасиченій парою атмосфері досить точкового задимлення, щоб запустити процеси її самоорганізації.

Розглянемо питання про самоорганізацію живої матерії. Почнемо знов-таки з повсякденної ситуації, цього разу — з галузі техніки. Що означає термодинамічна рівновага для автомобіля? Вона означає, що запас бензину в баці вичерпаний, двигун зупинився й охолонув до температури навколишнього середовища. Усі матеріально-енергетичні потенціали автомобіля вирівняні відповідно до другого начала термодинаміки. І якби автомобіль був замкнутою термодинамічною системою, то на цьому його роль була 6 вичерпаною, але автомобіль — система, відкрита щодо речовини. Це значить,


Сторінки: 1 2 3 4