перетворень можуть бути описані одним або системою звичайних диференціальних рівнянь, тому реакція типу A + B S описується такою математичною моделлю (системою диференціальних рівнянь):
де
- константа швидкості реакції з врахуванням того, що:
E – енергія активації;
R – універсальна газова стала;
T – абсолютна температура;
k0 – початкове значення константи швидкості реакції або коефіцієнт пропорційності (при , ).
Константа швидкості хімічної реакції – це параметр, що входить у кінетичне рівняння і показує, з якою швидкістю протікає хімічна реакція при концентраціях реагуючих речовин, що дорівнюють одиниці.
Константа швидкості реакції k є поряд зі швидкістю реакції однією з основних величин у хімічній кінетиці.
Для реакцій, що протікають в одну стадію, енергія активації показує, якою мінімальною енергією (в розрахунку на 1 моль) повинні володіти реагуючі частинки, щоб вони могли вступити в хімічну реакцію.
Частинки, енергія яких більша або дорівнює Е, називаються активними, а параметр Е: в зв’язку з цим називається енергією активації.
Для вирішення даної системи рівнянь відповідно до умови задачі можна використати систему Mathcad.
Розрахункова частина
Мал.1. Математична модель хімічної реакції
І її вирішення засобами система Mathcad.
мал.2. Графіки залежностей концентрацій речовини A, B і S
від часу протікання пеакції
мал.3. Визначення часу протікання реакції і
часу рівності концентрацій речовин B і S
мал.4. Визначення енергії активації, при якій
реакція прискорюється в 1,7 разів
Висновки
1. Концентрація реагенту В досягне 5% від початкового, тобто СВ = 5% СВ0 або СВ = 14 моль/м3 між 193,72 с 193,73 с.
2. Концентрація продукту S стане рівною даній концентрації реагенту В приблизно на 30,84 с від початку протікання реакції, бо різниця концентрацій на цей момент часу буде менша, ніж 0,002 моль/м3 (СВ = 139,999 моль/м3 і СS = 140,001 моль/м3 ).
3. Результуюча концентрація продукту S за побудованою моделлю складатиме близько 266 моль/м3.
4. Енергія активації повинна набути значення 4,017 104 Дж/моль для того, щоб при Т = 293 К реакція прискорилася у 1,7 разів.
Задача № 81
Об’єктом дослідження є процес протікання хімічної реакції.
Визначити, які з факторів х1, х2 або х3 найбільше впливають на даний процес (х1 – температура, х2 – час протікання реакції, х3 – доза опромінювання сировини).
План експерименту – повний факторний експеримент.
Область експериментування представлена такою таблицею:
Фактор | Позначення | Зміст | Одиниці
вимірювання | Основний
рівень | Інтервал
варіювання | Нижній
рівень | Верхній
рівень
1 | х1 | Температура | 0С | 30 | 10 | 20 | 40
2 | х2 | Час | с | 45 | 15 | 30 | 60
3 | х2 | Доза
опромінювання | мР | 0,8 | 0,3 | 0,5 | 1,1
За відгук у приймають величину виходу основної речовини.
Величину виходу основної речовини представлена такою таблицею:
№
з/п | Величина виходу основної речовини
У1 | У2 | У3
1 | 7,25 | 5,34 | 6,68
2 | 5,32 | 6,28 | 5,76
3 | 1,65 | 1,98 | 1,87
4 | 5,96 | 5,42 | 6,38
5 | 4,19 | 4,92 | 4,43
6 | 2,49 | 2,33 | 3,06
7 | 1,47 | 2,05 | 1,64
8 | 1,28 | 2,22 | 1,83
Рівень значущості а=0,05
Теоретична частина
Математична модель процесу, що вивчається, можна описати рівнянням
= b0+b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3
Враховуючи, що кількість факторів m=3, одержуємо, що кількість дослідів 2m=23=8.
Для спрощення міркувань останній член рівняння даної математичної моделі до уваги брати не будемо. Тому математична модель процесу, що вивчається, описується рівнянням
= b0+b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3
У цьому випадку, розширена матриця планування повного факторного експерименту має вигляд:
№
досліду | Адитивна
стала | Вектор-стовбці взаємодії | Відгук
Х0 | х1 | x2 | x3 | x12 | x13 | x23
1 | -1 | -1 | -1 | -1 | +1 | +1 | +1 | У1
2 | +1 | -1 | -1 | +1 | +1 | -1 | -1 | У2
3 | +1 | -1 | +1 | -1 | -1 | +1 | -1 | У3
4 | +1 | -1 | +1 | +1 | -1 | -1 | +1 | У4
5 | +1 | +1 | -1 | -1 | -1 | -1 | +1 | У5
6 | +1 | +1 | -1 | +1 | -1 | +1 | -1 | У6
7 | +1 | +1 | +1 | -1 | +1 | -1 | -1 | У7
8 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | У8
Попередній аналіз даних експерименту
Після проведення експерименту необхідно попередньо обробити одержані результати.
На цьому етапі розраховують середні арифметичні значення кожного з відгуків і дисперсії по кожному з дослідів. Після цього, використовуючи критерій Корхена, перевіряють гіпотезу про однорідність дисперсій і розраховують дисперсію відтворюваності.
Значення критерію Корхена обчислюють за формулою:
g=
де
g – експериментальне значення критерію Кохрена;
s2max – максимальна дисперсія;
– сума всіх дисперсій за N серіями вимірювань (дослідів);
s2i – дисперсії, розраховані в кожній серії вимірювань за n повторними (дублюючими) дослідами, а саме:
s2i =
де
yij – значення відгуку в і-й серії при j-му повторенні;
Ўi – середнє арифметичне значення результатів повторних вимірювань (відгуків) в і-й серії вимірювань;
n - кількість дублювань дослідів у даній серії;
Якщо виконується нерівність g < g*, то вважають, що дисперсії належать