метрам по поверхні, що при дальності до нього більш 8 млн. км еквівалентно кутовому дозволу в 0,2 мілісекунди дуги (це приблизно в 500 разів вище дозволу кращого оптичного телескопа).
За допомогою радіолокації вперше експериментально доведений (1980 рік) наявність у комети компактного ядра. Природне космічне сміття, що оточує ядро комети і представляє собою рій сантиметрових часток, також уперше був виявлений і досліджений за допомогою радіолокації. Крім того, саме радіолокація дозволяє визначити точну траєкторію небезпечної комети, оскільки, на відміну від оптики, тут виміряються координати центра мас ядра, а не фотоцентра коми.
Можливості тієї чи іншої радіолокаційної системи визначаються в першу чергу її енергетичним потенціалом SF. Крім того, немаловажні також місце розташування (широта) РЛС і кути огляду передавальної і приймальні антен. Якщо широти високі, то ряд об'єктів виявляється недоступний. Наприклад, у вересні 2004 року астероїд 4179 Таутатіс пройде від Землі на відстані всього 0,0104 АЕ, однак через велике негативне відмінювання в період максимального зближення (-60°), він не буде видний з Євпаторії (широта + 45°), а тим більше з Калязіна і Ведмежих Озер (широта + 54°). Аналогічно і для кутів огляду – нерухома антена в Аресібо може супроводжувати мету в межах ± 20 градусів щодо зеніту, що відповідає щоденної тривалості радіолокації визначеного об'єкта менш 2,4 години.
Найбільшими можливостями тут володіє радар у Голдстоуні, що через більш короткий, чим у локаторів в Аресібо і Євпаторії, довжини хвилі, забезпечує виявлення більш дрібних часток. Для локатора ОКБ МЕІ при розрахунках використана прийомна антена діаметром порядку 25 м, що повинна знаходиться недалеко від передавальної, оскільки при великому рознесенні (база Мео – Калязін дорівнює 150 км) засвічуваний обсяг, а отже і частота реєстрації часток, занадто малі.
Пропонований комплексний підхід до досліджень світу ближнього космосу "у цілому", що радіолокаційні методи дозволяють реалізувати за допомогою могутніх наземних систем, виправданий і в методичному, і в економічному аспектах. Підготовка і проведення радіолокаційних експериментів вимагають досить значних часу і засобів. У той же час, коло вітчизняних вчених і фахівців, приваблюваних для радіолокації навколоземних астероїдів, практично мало відрізняється від того колективу, що міг би знадобитися для організації аналогічних експериментів по радіолокації космічного сміття. Тому раціонально в майбутньому планувати комплексні радіолокаційні дослідження ближнього космосу, орієнтуючись при цьому на створення найбільш чуттєвої, російсько-української системи, що складає з 70 м антени і передавача 6-см діапазону із середньою потужністю 150 квт у Євпаторії і двох 64 м антен ОКБ МЕІ, що буде потрібно дооснастить двухканальними мало шумливими приймальними системами, що необхідно для радіолокаційної поляриметрії. Конструкція Євпаторійської антени дозволяє встановлювати на ній могутні передавачі з водяним охолодженням, тому згодом можлива модернізація з метою значного збільшення радіолокаційного потенціалу за рахунок переходу на хвилю 3,5 см (чи 4,2 см) і установки в Євпаторії передавача потужністю до 0,5 мегават.
У 1995 році під єдиним науковим і організаційним керівництвом був успішно виконаний перший міжнародний експеримент по міжконтинентальній радіолокації небесного тіла – навколоземного астероїда 6489 Голевка. В експерименті брали участь вчені і фахівці п'яти країн трьох континентів – США, Росії, України, Японії і Німеччині, і були задіяні шість найбільш великих параболічних антен. Тому, на нашу думку, що спирається на придбаний досвід, труднощів російсько-української взаємодії при радіолокаційних дослідженнях космосу носять найчастіше надуманий вузьковідомчий характер і можуть бути переборені при наявності погодженої програми досліджень і цільового адресного фінансування.
У якості найбільш ефективних можна було б привести наступні напрямки радіолокаційних досліджень ближнього космосу [13]:
1) Космічне сміття. Як уже було сказано вище, розрізняють дві основні області підвищеної концентрації космічного сміття (КС) – низькі, з висотою до 1000 км, орбіти і геостаціонарне кільце. Доцільність повторення "beam-park" експериментів, запропонованих і вперше здійснених Р. Голдстейном у США , полягає в тім, що всі попередні виміри потоку, розподіли й еволюції низкоорбітального КС виконані тільки в західній півкулі і украй важливо зрозуміти, наскільки обгрунтовані припущення про його просторову однорідність.
Виміру в області геостаціонарного кільця практично відсутні, тому тут необхідні планомірні дослідження. Ми могли б зайняти в цьому напрямку лідируюче положення, оскільки на американських локаторах такі дослідження поки не плануються через їхній дуже щільне завантаження іншими космічними і радіоастрономічними дослідженнями, а в інших країнах такі могутні інструменти, як Євпаторійський локатор, відсутні.
2) Навколоземні астероїди і комети. Перші радіолокаційні дослідження ОЗО були початі в США в 1968 році і до дійсного часу (середина 1999 року) усього досліджене 56 навколоземних астероїдів і 6 комет. У числі цих досліджень і проведені нами в 1992 році перша поза США радіолокація навколоземного астероїда 4179 Таутатис і в 1995 році перша міжконтинентальна радіолокація навколоземного астероїда 6489 Голевка. Крім США і Росії поки немає країн, здатних здійснювати самостійні радіолокаційні дослідження навколоземних астероїдів і комет.
У випадку ОЗО найбільшу цінність могли б представляти виміри допплерівських зміщень і запізнювання ехосигналів, що дозволяє радикально уточнити орбіти цих об'єктів і оперативно оцінити ступінь астероїдної небезпеки. Як уже відзначалося, на основі Євпаторійськой антени діаметром 70 м і встановленого там могутнього передавача 6-см діапазону і з залученням інших найбільших параболічних антен Європи й Азії (у першу чергу це дві 64 м антени ОКБ МЕІ, 70 м антена і передавач в Уссурійську, 32 м антена ІПА РАНЕЙ) можна було б регулярно, з частотою 2–3 нових навколоземних об'єктів у