У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент





Космос - Земля - Людина

Зоряне небо. Одним з найважливіших положень матеріалістичної діалектики в уявлення про загальний взаємозв'язок і взаємозалежність явищ природи.

Як суспільна формація людство підпорядковується особливим специфічним закономірностям — законам суспільного розвитку, відкритим і дослідженим прихильниками матеріалізму. Але з точки зору природничих наук ми — частина Всесвіту і підпорядковуємося діючим у Всесвіті фізичним та іншим закономірностям.

Не тільки цілий ряд умов нашого життя, а й саме існування земної цивілізації залежать від того, що являє собою наш Всесвіт, як він розвивається, які фізичні процеси у ньому відбуваються, які закони діють. Усвідомлення людиною з наукових позицій свого місця у Всесвіті, свого взаємозв'язку з навколишнім світом, має не тільки важливе значення для нашої практичної діяльності, воно становить основу нашого наукового світогляду.

Якщо ми — частина Всесвіту, то наше існування має бути тісно пов'язане не тільки з оточуючими нас явищами, а й з явищами космічного характеру.

Подолати земне тяжіння і вийти у космос людині вдалося тільки у другій половині XX століття. І все ж життя людини було пов'язане з космічними явищами вже з глибокої давнини. Як уже було зазначено, зорі й планети допомагали людині знаходити шляхи в океані, вимірювати час, складати календарі, визначати строки сільськогосподарських робіт.

Однією з перших, зрозуміло, ще наївних спроб виявити зв'язок земних і небесних явищ були міфи стародавніх греків про зоряне небо. Хоча в них діють численні боги, німфи, циклопи й інші фантастичні істоти, що мають надприродні властивості, все ж їхніми головними героями в люди, які не тільки виступають нарівні з богами, а нерідко і перемагають їх.

Зрозуміло, зв'язок між земним і небесним як у міфах стародавніх греків, так і в аналогічних легендах інших народів е ілюзорним. Він не відповідає реальному стану речей.

Релігійні люди намагалися знайти зв'язок між «небесним» і «земним» також у рідкісних небесних явищах — повних затемненнях Місяця й Сонця, появах яскравих комет, дощах падаючих зір. Але й ці зв'язки були ілюзорними, вони існували лише в уяві наших предків.

Роль математичних методів у пізнанні світу. Пізнання природничими науками навколишнього світу нерозривно пов'язане із застосуванням математичного апарату і математичних методів дослідження.

Не випадково Коперник на титульному аркуші своєї великої праці написав: «Хай не входить сюди ніхто, не обізнаний з математикою». Без допомоги математичного апарату неможливо було б точно виразити реальні кількісні співвідношення та залежності, що існують у природі.

Правда, у процесі свого розвитку наука виявляє не тільки кількісні, а й якісні закономірності. Однак, по-перше, в основі будь-яких якісних перетворень лежать кількісні зміни. А, по-друге, виявлення якісних закономірностей не дає нам завершеного знання — це лише проміжний етап. Наукова теорія тільки тоді може вважатися завершеною, коли вона дістає свого математичного виразу. Зрозуміло, це в першу чергу стосується таких наук, як фізика і астрономія. До того ж математичні формули — це не тільки спосіб описання. Математичний метод має колосальну евристичну силу; виходячи з фактів реального світу, він здатний давати нове знання. Якщо математичний апарат правильно відображає існуючі в природі зв'язки і відносини, то шляхом чисто математичних перетворень можна, відштовхуючись від явищ, на основі яких цей апарат був побудований, передбачати нові, ще невідомі явища, а також прогнозувати дальший розвиток тих чи інших природних процесів.

Спостережна астрономія пов'язана з точними кількісними вимірюваннями. А ці вимірювання неможливі без введення якоїсь системи відліку, подібної до географічної системи координат на Землі. Тільки за цієї умови можна забезпечити, в одного боку, потрібну точність результатів спостережень, а з другого — можливість цільоуказань на небі, що дають змогу безпомилково відшукувати досліджувані об'єкти.

Введення небесних координат здійснюється за допомогою спеціальної системи геометричних побудов, сукупність яких дістала назву сферичної астрономії. На перший погляд сферична астрономія — не більш ніж умовна допоміжна конструкція. Але саме вона забезпечує відповідність результатів спостережень реальній природі і можливість практичних застосувань астрономічних даних.

Методичні міркування. Слід зазначити, що нині величезна більшість астрономічних розрахунків здійснюється з допомогою швидкодіючих електроннообчислюваль-них машин. Це дає змогу за короткі строки діставати бажані результати і тим самим значно прискорює процес наукового дослідження Всесвіту.

Водночас більшість математичних конструкцій, навіть незважаючи на те, що вони приводять до бажаних результатів, можуть вдатися надуманими й штучними. В зв'язку з цим може скластися зовсім неправильне й небезпечне у світоглядному плані уявлення про те, що людина нібито за допомогою математичних формально-логічних побудов конструює властивості навколишнього світу.

«Чиста математика,— писав Кант,— має своїм об'єктом просторові форми і кількісні відношення дійсного світу, отже — дуже реальний матеріал. Той факт, що цей матеріал набирає надзвичайно абстрактної форми, може лише слабо затушувати його походження із зовнішнього світу. Але щоб бути спроможним дослідити ці форми і відношення в чистому вигляді, треба цілком відокремити їх від їхнього змісту, залишити цей останній осторонь як щось неістотне».

Тим самим Кант хотів підкреслити, що абстрактний характер математичних побудов ніякою мірою не може бути підставою для висновку про те, що цей апарат існує сам по собі поза всякою залежністю від реальної дійсності.

З другого боку, неправомірно також ототожнювати математичний апарат з реальною дійсністю.

Тому, знайомлячи школярів із сферичною астрономією, треба не тільки дати уявлення про те, як практично користуватися системами небесних координат, а й показати, яким чином пов'язані її геометричні побудови з реальними властивостями навколишнього світу


Сторінки: 1 2