(як ви знаєте з фізичних дослідів) сплющуються, стискаються вздовж осі обертання. Через це трохи сплюснута біля полюсів зем-на куля, а найбільше сплюснуті Юпітер і Сатурн, які швидко обертаються.
Але форма планет може змінюватися і під дією сил їх взаємно-го притягання. Кулясте тіло (планета) рухається в цілому під дією гравітаційного притягання іншого тіла так, ніби вся сила притягання прикладена до його центра. Проте деякі частини пла-нети знаходяться на різній відстані від тіла, яке притягує, тому гравітаційне прискорення в них також неоднакове, то й спричи-няє виникнення сил, які намагаються деформувати планету. Різ-ниця прискорень, що виникають внаслідок притягання іншим ті-лом, у даній точці й у центрі планети називається припливним прискоренням.
Як приклад розглянемо систему Земля — Місяць. Один і той самий елемент маси в центрі Землі притягатиметься Місяцем слаб-ше, ніж на боці, зверненому до Місяця, і сильніше, ніж на проти-лежному. Через це Земля, і насамперед її водна оболонка, злегка розтягується в обидва боки вздовж лінії, яка сполучає її з Міся-цем. На малюнку 35 океан для наочності зображено так, ніби він покриває всю Землю. У точках, що лежать на лінії Земля — Місяць, рівень води найвищий — там припливи. Уздовж крута, площина якого перпендикулярна до напряму лінії Земля — Місяць і проходить через центр Землі, рівень води найнижчий — там від-пливи. При добовому обертанні Землі в смугу припливів і відпливів послідовно потрапляють різні її місця. Легко зрозуміти, що за добу може бути два припливи і два відпливи.
Сонце також спричиняє на Землі припливи і відпливи, але че-рез його велику віддаленість вони слабкіші, ніж місячні, і менш помітні.
З припливами переміщується величезна маса води. У наш час починають використовувати колосальну енергію води, яка бере участь у припливах, на берегах океанів і відкритих морів.
Вісь припливних виступів завжди має бути спрямована до Мі-сяця. Обертаючись, Земля намагається повернути водяний при-пливний виступ. Оскільки вона обертається навколо осі значно швидше, ніж Місяць навколо неї, то Місяць відтягує водяний горб до себе. Внаслідок цього виникає тертя між водою і твердим дном океану — так зване припливне тертя. Воно гальмує обер-тання Землі, і доба з плином часу стає довшою (колись вона становила тільки 5—6 год). Сильні припливи, які спричиняє на Меркурії і Венері Сонце, очевидно, й зумовили їх украй повільне обертання навколо осі. Припливи, спричинені Землею, настільки загальмували обертання Місяця, що він завжди звернутий до Землі одним боком. Отже, припливи є важливим фактором еволю-ції небесних тіл і Землі.
5. Маса і густина Землі. Закон всесвітнього тяжіння також дає змогу визначити одну з найважливіших характеристик небес-них тіл — масу, зокрема масу нашої планети. Справді, за законом всесвітнього тяжіння прискорення вільного падіння
Отже, якщо відомі значення прискорення вільного падіння, граві-таційної сталої і радіуса Землі, то можна визначити її масу.
Підставивши у згадану формулу значення g = 9,8 м/с2, G = 6,67- 10-11 Н * м2/кг2, R = 6370 км, знаходимо, що маса Землі М = 6 * 1024 кг.
Знаючи масу та об'єм Землі, можна обчислити її середню гус-тину. Вона становить 5,5 * 103 кг/м3. Але густина Землі з глиби-ною зростає, і, за розрахунками, поблизу центра, в ядрі Землі, вона дорівнює 1,1 * 104 кг/м3. Густина з глибиною зростає внаслідок збільшення вмісту важких елементів, а також підвищення тиску.
Мал.2. Схема місячних припливів
6. Визначення мас небесних тіл. Ньютон довів, що точнішою є така формула третього закону Кеплера:
де М1 і М2 — маси будь-яких небесних тіл, а m1 і m2 — відповідно маси їхніх супутників. Так, планети є супутниками Сонця. Ми бачимо, що уточнена формула цього закону відрізняється від наближеної наявністю множника, який містить маси. Якщо під М1 = М2 = М розуміти масу Сонця, а під m1 і m2 — маси двох різних планет, то відношення мало відрізнятиметься від одиниці, бо m1 і m2 дуже малі порівняно з масою Сонця. При цьому точна формула помітно не відрізнятиметься від набли-женої.
Уточнений третій закон Кеплера дає змогу визначити маси планет, які мають супутників, і масу Сонця. Щоб визначити масу Сонця, порівняємо рух Місяця навколо Землі з рухом Землі навколо Сонця:
де T і а — період обертання Землі (рік) і велика піввісь її орбіти, Tc і ас— період обертання Місяця навколо Землі і велика піввісь його орбіти, М — маса Сонця, М — маса Землі, mc — маса Місяця. Маса Землі дуже незначна порівняно з масою Сон-ця, а маса Місяця мала (1 : 81) порівняно з масою Землі. Тому другі доданки в сумах можна відкинути, не роблячи великої
похибки. Розв'язавши рівняння відносно маємо:
Ця формула дає змогу визначати масу Сонця, виражену в ма-сах Землі. Вона становить близько 333000 мас Землі.
Для порівняння мас Землі та іншої планети, наприклад Юпі-тера, треба у вихідній формулі індекс 1 віднести до руху Місяця навколо Землі масою M1, а 2 — до руху будь-якого супутника навколо Юпітера масою M2.
Маси планет, що не мають супутників, визначають за тими збуреннями, які вони спричиняють своїм притяганням у русі сусід-ніх з ними планет, а також у русі комет, астероїдів чи космічних апаратів.