точні зображення космічних джерел радіовипромінювання, використовуваних у геодезії як точки відліку. У той же час РІСДБ забезпечить регулярні спостереження, що доповнять і розширять уже існуючі мережі геодезичних радіоінтерферометрів з наддовгою базою.
РІСДБ у космосі. Ще одним застосуванням РІСДБ буде міжпланетна навігація. Свої здібності в цьому відношенні мережі РІСДБ продемонстрували з вражаючим успіхом під час недавньої радянської програми «Вега», ціль якої полягала в посилці космічного апарату до Венери і комети Галлея. Відповідно до цієї програми, що з'явилася найбільшим з коли-небудь здійснюваних міжнародних проектів, мережа з 20 антен у різних точках земної кулі стежила за двома космічними апаратами. Обоє вони досягли Венери в червні 1985 р., скинувши в її атмосферу апарат, що спускається на аеростаті, з передавачем, що працює на частоті 1,7 Ггц. Мережа РІСДБ супроводжувала ці апарати, що гнались венеріанськими вітрами, швидкість яких, як показали виміри, досягає 225 км/ч.
Пролетівши Венеру, апарати продовжували рух до місця зустрічі з кометою Галлея, що відбулася 6 і 9 березня 1986 р., на тиждень раніш запланованої зустрічі комети з космічним апаратом «Джотто» Європейського космічного агентства. Учені цього агентства розраховували направити «Джотто» на освітлювану Сонцем сторону комети для того, щоб зробити фотознімки, але оскільки в них не було точних даних про місце розташування комети, їхні фотокамери могли виявитися спрямованими на тіньову сторону. Оптичні зображення комети, отримані апаратами «Вега», разом з даними про положення «Джотто», що поставляються мережею РІСДБ, дозволили європейським вченим в останній момент скорегувати траєкторію космічного апарата і підвести його на відстань трохи сотень миль від освітленого Сонцем крижаного ядра комети. Фотокамери на борті апарата «Джотто» одержали можливість зробити вражаючі знімки комети Галлея 14 березня, під час максимального зближення апарату з кометою до моменту припинення зв'язку з апаратом після його зіткнення з осколками комети.
У будь-якому випадку, навіть коли РІСДБ використовується разом з іншими розосередженими по земній кулі радіотелескопами, його роздільна здатність в остаточному підсумку буде обмежена розмірами Землі. Подальше підвищення роздільній здатності системи зв'язано з винесенням базових ліній у космічний простір, ймовірно, на Місяць чи навіть на інші планети. Побудова РІСДБ із базуємими в космосі антенами сполучена з чималими технічними труднощами, зв'язаними з розробкою великогабаритних антен підвищеної точності і високочутливих приймачів, призначених для роботи в суворих космічних умовах, де неможливо забезпечити їхнє обслуговування людиною. Можливість побудови таких космічних систем уже була доведена групою вчених США, Австралії і Японії, що використовували невелику антену на борті супутника в якості одного з елементів РІСДБ зі змішаним наземним і космічним базуванням.
Плани створення спеціалізованих РІСДБ із залученням системи супутників уже зараз обговорюються в США, Західній Європі, Японії і Радянському Союзу. Висунуто пропозицію про спільний проект НАСА і Європейського космічного агентства по висновку супутника «Квазат» з антенами діаметром 10 – 15 м на навколоземну орбіту до середини наступного десятиліття. Радянський Союз також оголосив про програму створення космічного РІСДБ, що припускає вивід двох чи трьох супутників «Радіоастрон» на орбіту з апогеєм до 75 000 км. Європейські й американські вчені запрошені брати участь у цих дослідженнях, однак прагнення уряду США обмежити обмін із СРСР технологічними досягненнями в області освоєння космічного простору може знизити ступінь участі американських учених.
У більш віддаленому майбутньому радянські вчені мають намір вивести на сонячну орбіту гігантські антени з поперечними розмірами в декілька кілометрів. Такі ґрати могли б мати базові лінії довжиною декілька сто мільйонів кілометрів, а роздільна здатність системи досягла б мільйонної частки секунди дуги. Настільки могутній радіотелескоп відкриває нові можливості для астрономії і теоретично дозволить спостерігати «сонячні плями» на інших зірках нашої Галактики і розглянути характерні риси сусідніх галактик з розмірами, порівняно з передбачуваними розмірами чорних дір. Як не привабливі ці прогнози, створення й ефективне використання такою антеною ґрат може стати реальним лише в міру нагромадження досвіду роботи з наземними РІСДБ і антенами на навколоземній орбіті.
Наука і суспільство
Молюск і бомба. Скільки часу на ділі потрібно наутілусу, щоб виростити нову камеру, донедавна залишалося невідомим. Цей молюск вислизає від спостереження: місце його проживання обмежене тропічними водами західної частини Тихого океану, а плаває він звичайно на глибинах від сотні до декількох сотень метрів, так що піймати його непросто. Але навіть будучи пійманим, він рідко живе більше року, і в цьому ще одні труднощі спостереження за його розвитком. Зараз дослідники довідалися дещо про життя наутілусів, принаймні одного їхнього представника, в організмі якого був виявлений вуглець-14, що утворився в результаті ядерних вибухів в атмосфері. Виміривши концентрацію цього ізотопу в раковині молюска, учені прийшли до висновку, що період «змужніння» у наутілуса склав 12 років. В міру дорослішання наутілуса його ріст сповільнювався і камери в раковині утворювалися усе рідше, але усе-таки швидше, ніж одна камера в рік, як уявляв собі Холмс.
Н. Ландман з Американського музею природної історії, Э. Драффел з Океанографічного інституту у Вудс-Холі, Дж. Кочран з Університету шт. Нью-Йорк у Стоні-Бруке й А. Джалл з Арізонського університету почали своє дослідження з того, що спробували визначити, у якому ступені ядерні іспити в атмосфері, що проводилися в 1950-х і 1960-х роках, могли забруднити середовище проживання наутілуса. Після того, як у 1963 р. СРСР і США припинили ядерні іспити в атмосфері, продукти ядерних вибухів продовжували попадати в океан. Вивчивши корали,