умовне зображення предметів, взаємозв'язків між ними і взаємини величин за допомогою відрізків і з дотриманням визначеного масштабу.
Креслення, на якому взаємозв'язки і взаємини передаються приблизно, без точного дотримання масштабу, називається схематичним кресленням, чи схемою.
Предметне і графічне моделювання математичної ситуації при розв’язанні текстових задач давно застосовується в шкільній практиці, але без належної системи і послідовності, що під неправильним розумінням ролі наочності в навчанні і розвитку учнів. Дотепер багато вчителів неправильно думають, що наочність обов'язково повинна бути тільки на початковому етапі навчання, а з розвитком абстрактного мислення в дітей вона своє значення втрачає. Звідси в II—III класах основним засобом наочності при аналізі задач стає короткий запис умови задачі і лише зрідка застосовуються готові схеми і таблиці. А тим часом наочність, особливо графічна, потрібна на всьому протязі навчання як важливий засіб розвитку більш складних форм конкретного мислення і формування математичних понять. Як відзначає Л. Ш. Левенберг, «малюнки, схеми і креслення не тільки допомагають учнем у свідомому виявленні схованих залежностей між величинами, але і спонукують активно мислити, шукати найбільш раціональні шляхи розв’язання задач, допомагають не тільки засвоювати знання, але й опановувати умінням застосовувати їхній» .
Так, у II класі, вперше аналізуючи задачу, помилкові розв’язання якої ми розглянули: «У перший день для ремонту школи привезли 28 колод, а в другий день привезли на 4 машинах по 10 колод. Скільки усього колод привезли за ці два дні?», звичайно записують її коротко в такому виді:
I д. - 28 к.
?
II д. - на 4 маш. по 10 к.
Така модель не відбиває життєвої ситуації з достатньою наочністю, що і приводить до помилок у розв’язанні задачі. Тому необхідно змоделювати її умова у виді схематичного малюнка:
І д. - 28 к.
ІІд. – 10 к. 10 к. 10 к. 10 к.
Така модель відбиває математичну ситуацію більш наочно. По такій моделі навіть слабкий учень зможе записати розв’язання, якщо не так:
28+10 4=68 (к.), те хоча б так:
1) 10+10+10+10=40 (к.)
2) 28+40=68 (к.)
і викликатиме менше труднощів при повторному розв’язанні цієї чи подібної задач.
Розглянемо другу задачу: «У радгоспі працюють 37 трактористів, шоферів на 8 більше, ніж трактористів, а комбайнерів на 5 менше, ніж шоферів. Скільки комбайнерів працює в радгоспі?» Звичайний короткий запис цієї задачі виглядає так:
Т.—_37 ч.
Ш.— на 8 більше, ніж трактористів
К.— ? — на 5 менше, ніж шоферів
Такий запис при первинному аналізі цієї задачі нераціональний, тому що не розкриває наочно взаємини величин і не допомагає у виборі дій.
Така модель дає наочне представлення про зв’язок між даними і шуканим у задачі. Аналізуючи задачу, діти з'ясовують, що шоферів на 8 більше, ніж трактористів, тобто їх стільки ж так ще 8. Тому відрізок на схемі, що зображує чисельність шоферів, вони накреслять більшої довжини, чим відрізок, що зображує чисельність трактористів. А тому що чисельність комбайнерів на 5 менше, ніж шоферів, тобто їх стільки ж, але без 5, те і відрізок, що показує чисельність комбайнерів, повинний бути менше відрізка, що показує чисельність шоферів. При такім моделюванні вибір дій буде зрозумілий і обґрунтований, учні не будуть діяти навмання, механічно маніпулюючи числами.
Розглянемо задачу з пропорційними величинами, що викликала великі труднощі в другокласників: «У трьох однакових ящиківах 21 кг апельсинів. Скільки кілограмів апельсинів у 8 таких ящиківах?» Звичайна умова цієї задачі відразу записують у таблицю:
Маса одного ящика | Кількість ящиків | Загальна
маса
Однакова | 3 | 21
8 | ?
Таблиця — це теж модель задачі, але більш абстрактна, ніж схематичний малюнок чи креслення. Вона допомагає учням краще усвідомити знання взаємозалежностей пропорційних величин, тому що сама таблиця цих взаємозалежностей не показує. Тому при початковому ознайомленні з такою задачею таблиця мало допомагає уявити математичну ситуацію і вибрати потрібну дію. При початковому знайомстві з цією задачею доцільніше змоделювати її умова по-іншому, у виді схематичного малюнка чи креслення.
21 кг
По такій моделі шлях розв’язання задачі став би більш зрозумілим для всіх учнів: щоб довідатися, скільки кілограмів апельсинів у 8 ящиках, потрібно знати, скільки кілограмів апельсинів в одному ящику.
Коли зшили кілька платтів, витрачаючи на кожне по 3 м, в майстерні залишилося 90 м ситцю. Скільки платтів зшили?» Очевидно при первинному аналізі цієї задачі не використовувалося графічне моделювання, що могло б являти собою, наприклад, таку схему.
Така схема зробила би вибір дії більш зрозумілим для кожного учня.
Особливо велику роль відіграє моделювання при розв’язанні задач на рух. При цьому модель повинні створювати самі учні під керівництвом учителя.
Задача: «Із двох міст, що знаходяться на відстані 520 км, одночасно вийшли назустріч один одному два потяги, що зустрілися через 4 год. Один потяг рухався зі швидкістю 60 км/год. З якою швидкістю рухався другий потяг?» Вчитель у розмові з учнями з'ясовує, про який рух говориться в задачі, що про цей рух відомо, і пропонує накреслити схему руху. Викликаний учень, повторюючи зміст задачі, моделює описану в ній життєву ситуацію. Відстань між містами він зображує у виді відрізка. Напрямок зустрічного руху показує стрілками, а місце зустрічі позначає прапорцем. На питання вчителя, як позначити на схемі, що потяги зустрілися через 4 год, учень відзначає число годин руху кожного потяга вертикальними штрихами на схемі, а також позначає цифрами відстань між містами і швидкість руху першого потяга. Схема здобуває вид.
Розв’язання задачі