відповідно для штрафу $100 та $1000.
Чисельний приклад1,31 Оптимальна величина резервного запасу прирізних відношеннях витрати зберігання однієї одиниці до величини неустойки та відношення ймовірності приходу клієнта до ймовірності обслуговування клієнта.
x/y \ Ck/M | ,00001 | 0,0001 | ,001 | 0,01 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9
0,1 | 5,36 | 4,36 | 3,36 | 2,36 | 1,36 | 1,06 | 0,89 | 0,76 | 0,66 | 0,58 | 0,52 | 0,46 | 0,41
0,2 | 7,45 | 6,02 | 4,59 | 3,16 | 1,73 | 1,30 | 1,04 | 0,87 | 0,73 | 0,61 | 0,52 | 0,43 | 0,36
0,3 | 9,72 | 7,80 | 5,89 | 3,98 | 2,07 | 1,49 | 1,15 | 0,92 | 0,73 | 0,58 | 0,45 | 0,34 | 0,24
0,4 | 12,47 | 9,96 | 7,44 | 4,93 | 2,42 | 1,66 | 1,22 | 0,90 | 0,66 | 0,46 | 0,29 | 0,15 | 0,02
В першій строчці розташовані різні відношення ,в першому стовпці в таблиці оптимальна величина резервного запасу розраховується по формулі (1.83)
1.7 Питання ціноутворення
1.7.1 Еластичність то формування оптимальної ціни
Нехай р- ціна продажу, с- собівартість продукції, q- об’єм продажу в штуках, n- прибуток, R -виручка.
тоді:
(1,85)(1,86)
тому задача збільшення виручки є составна задачі збільшення прибутку.об’єм продаж (в штуках) залежить від ціни продаж.
Визначення 1,39 Еластичність
Еластичністю об’єму продаж q в штуках до продажній ціни р зветься відсоткове відношення об’єму продаж при зміні ціни продажу на 1%:
(1,87)
Еластичність показує на скількі відсотків змінюється q при зміні p на1%
Теорема 1.11 Оптимальність цени по об’єму продаж
Необхідною та достатньою умовою оптимальності ціни по об’єму продаж є
(1,88)
Доведення:
Знайдемо умову максимальності виручки,виходячи з умови:
або
(1,89)
где похідна об’єму продаж по ціні
Звідси отримаємо умову оптимальності ціни р виходячи з об’му продаж:
В противному випадку , зменшуючи ціну при <-1та збільшуючи цену при >-1ви збільшуєте об’єм продаж.
Теорему доведено.
Виникає питання вимірювання еластичночті. На практиці воно розв’язується наступним чином : Устанавлюючи розпродажзі зкидкоюна10-20% встановлюючи трохи різні ціни на практично однакові товари, ви відразу можете визначити еластичність.
Теорема 1,12 Оптимальність ціни по прибутку
Прибуток до сплати податків та процентів по кредитах буде максимальним при =-1де
або
(1,90)
Доведення:
Прибуток n до сплати процентів та податків дорівнює
беремо похідну по р
або
(1,91)
Бачимо що формула (1.91) повністю співпадає з (1.89) з єдиною різніцею :в(1,91) стоїті відсотков зміна надбавки р-с ,а ні ціни як в (1,89). Тому умова оптимальності по прибутку є: =-1
тоді
Теорему доведено.
1.7.2 Просторова вартість
Визначення 1,40 Просторові витрати
Витрати неспівпадання місцезнаходження та характеристик товара з місцезнаходженням та очікуваннями покупця звуться просторовими витратами. Вони також можуть називатися просторовими витратами.
Просторова відстань входить в витрати продукції неявним та явним чином.Так в собівартість продукції включаються витрати на доставку як явна складова. Неявним складовими є час ,затрачений покупцем на пошук та покупку товару , час затрачуємий на адаптацію товарів до потреб споживачів.
Чисельний приклад 1,32
Так наприклад якщо вартість однієї години покупця дорівнює w($10)то стояння в черзі на протязі 15 хвилин е додаткові просторові витрати в розмірі $2,5 котру теряють покупець та продавець .Чистка картоплі на протязі тридцяти хвилин є додаткові просторові витрати $7.50.
Якщо фірма зможе знизити просторові витрати то вона приблизив товар до покупця зможе взяти собі частку суми. Можливою помилкою вважається неправильне оцінювання вартості часу покупця.
Диференціювання ціни
Встановив оптимальну ціну р ви берете тільки частину можливого попиту , відбрасуючи тих покупців які можуть заплатити більше собівартості але не здібних заплатити ціну р , також ви не добираєте від тих котрі готові заплатити більш ніж р.
Розв’язком цієї проблеми є цінова диференціація, наприклад, пропозиція товару в деяких варіантах: базовий , середній, подарунковий.
Визначення1,41Диференціація ціни
Заміна єдиної , однакової для всіх класів покупців ціни на систему цін різних для різних класів покупців зветься диференціацією цін.
При цьому виникає проблема щоб багаті не купували по цінам для бідних. Таки захист може будуватися як на пошуку захищених від підробки сигналів доходу так і бути автоматичною. Прикладом автоматичного захисту буде предоставлення купонів на скидки. Але ж купони можна знайти тільки витратив час h В цьому випадку вартість товару з купоном p(w,h) буде дорівнювати р-скидка+wh
(1,92)
w-вартість одиниці часу покупця
-скидка на пошук якої треба затратити h часу.
Умовою того що покупець не буде шукати купон на скидку та купить товар за ціну р є більша вартість часу затрачуємого на пошук.
Нехай (1,93)
Ми знаємо ціну котру покупець згоден заплатити за товар ,в залежності від рівня його прибутку. Тоді
(1,94)
При цих умовах покупець з прибутком більшим за w будуть купувати по ціні р без купона.
1.7.4 Використання знижок для маркетингового аналізу покупців
Виникає питання як та з якими витратами добувати інформацію о покупцях.
На заході для цього покупцю пропонується анкета для отримання дисконтної картки. Такі анкети пропонуються при відкритті рахунку в банку , заповненні гарантийного талону довгого користування.
Покупцю пропонують заповнити анкету за допомогою різних пільг:
Лотерея, розсилка купонів, пластиковою карткою. Також купони можуть бути вкладені в упаковку та зараховуватися або ж відразу при покупці ,або по прид’явленню виробнику, наприклад, поштою.
Виникє питання про достовірність отриманої інформації від покупця. Нема впевненості, що покупець буде чесно відповідати на всі питання. Тут можна примінити типічну для таких опитувань техніку. Поряд з прямими питаннями можна задавати косвені питання, наприклад, о стилі життя,