У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


на основі одноланцюгових нуклеінових кислот.

ковалентно закріплений на носії

фрагмент нуклеінової кислоти

Носій кислоти

Біодатчик

2. Дослідна проба, що містить одноланцюгові фрагменти нуклеїнової кислоти.

 

= радіоактивна мітка

 

3. Аналіз проби.

=

 

розпізнавання та утворення

комплементарного дуплекса

Малюнок 3.Принципіальна схема біодатчика на основі одноланцюгової НК.

Значні успіхи досягнуті при виявленні патогенних мікроорганізмів за допомогою “ДНК-проб” в біологічних рідинах, харчових продуктах, оточуючому середовищі. В таблиці 3 наведені різні віруси,бактерії та інші патогенні мікроорганізми, які можна визначити за допомогою “ДНК-проб”(21).

Таблиця 3.

 

Віруси; Вірус гепатита В

Вірус гепатита А

Цитомегаловірус

Аденовіруси

Вірус герпеса

Ентеровіруси

Вірус папіломи людини

Ротавірус

Вірус

Вірус

Паповіруси

Риновіріси

Бактерії; Шигелла

Сальмонелла

Легіонелла

Кампілобактер

Золотистий стафілокок

Інші збудники; Трипаносома

Найпростіші з роду

Шистосома

Хламідія

Кандіда

 

Біосенсори на основі рідких кристалів суперспіральних молекул ДНК викликають особливу увагу через можливість існування кільцевих молекул ДНК у різних формах, що різняться за своїми властивостями, до того ж існування цих форм цілком залежить від зовнішніх факторів. Під дією ферментів (нуклеаз та рестриктаз) рощеплюється суперспіральна упаковка молекул і відбувається перебудова кристалів, що проявляється аномальною оптичною активністю дослідної дисперсії (Малюнок 4.). Цей біосенсор використовується для визначення агентів, що руйнують суперспіральну ДНК(41).

1.Формування дисперсної фази з суперспіральних молекул ДНК в полімер-вмісному

розчині

Суперспіральна ДНК Рідкокристалічна дисперсія

з суперспіральних молекул ДНК

Р Р Р

Р Р Р

Р Р Р

2.Розщеплення суперспіральних молекул ДНК ферментом призводить до утворення

холестеричних рідких кристалів

Р Р Р Р Р Р Р Р Р

Р Р Р Р Р Р Р Р Р

Р Р Р Р Р Р Р Р Р

Біодатчик Проміжна рідкокристалічна Холестерична дисперсна

фаза фаза із молекул ДНК

Малюнок 4. Принципіальна схема біодатчика на основі суперспіральної кільцевої ДНК в

полімервмісному розчині

Серед широкого різноманіття біосенсорів хочу ще окремо згадати світлочутливі біосенсори, як яскравий приклад використання біологічного матеріалу.Світлочутливі біосенсори-це прилади, що містять в якості робочого матеріалу ті чи інші фоточутливі біологічні структури (макромолекули, фоторецепторні мембрани) і призначені для реєстрації, перетворювання та зберігання оптичної інформації.

Відправним пунктом та стимулом до розробки та створення таких сенсорів слугують дані про високу квантову ефективність, чутливість та широкий динамічний діапазон природніх світлочутливих систем, що беруть участь в таких процесах, як зір, фотосинтез та ін.

Важливу роль в створенні молекулярних приладів відіграють біомолекули, а саме, природні хромофор-білкові комплекси, що містяться в фоторецепторних та енергоперетворюючих мембранах.

Наявність у цих комплексів цілого ряда унікальних властивостей: фотохромізма, електрохромізма, електрогенного характеру функціональних реакцій, природньої поляризації компонентів та ін. - дозволяє намітити шляхи для використання препаратів зазначених комплексів для цілей біотехнології, біоелектроніки та при розробці приладів корисного використання сонячної енергії, сенсорних елементів систем перетворення та реєстрації інформації(42).

Розділ другий.Перетворювачі різних типів, що використовуються в біосенсорах.

І.Електрохімічні біосенсори.

Електрохімічні біосенсори являють собою електрохімічні перетворювачі в поєднанні з ферментами (але не завжди). Ферментні електроди були найпершими описані в літературі та розроблені на комерційному доступному рівні(10).

Ферментні реакції можна вимірювати використовуючи амперометричні, потенціометричні та кондуктометричні біосенсори. Амперометричні біосенсори вимірюють електричний струм, коли напруга виникає між робочим електродом та електродом порівняння. З хімічного боку також впливають окисно-відновні реакції, що викликають струм. Найбільш поширенним прикладом такого роду аналізу є визначення глюкози з використанням глюкозоксидази:

Глюкоза + Кисень —Глюконолактон + Перекис водню

Зміну концентрації кисню можна визначити за допомогою кисневого електроду Кларка, на якому кисень проникає крізь напівпроникну мембрану, щоб відновитися на платиновому електроді. Навпаки, зміна концентрації перекису водню спостерігається при окисленні на платиновому електроді. Обидва ці підходи мають фундаментальні недоліки. Атмосферний кисень може вносити похибки, до того ж важливим є не допустити впливу інших електроактивних компонентів.

Щоб уникнути похибок, в ферментних реакціях, використовують альтернативні джерела електронів. Ці акцептори електронів відомі як медіатори, що переносять електрони між реагентами та електродом(5). Прикладом такого медіатору слугує залізо(3+):

Глюкоза + 2+ Глюконолактон + 2 + 2+ Залізо окислюється на аноді, щоб відновитися в реакції. Сенсор не є чутливим до кисню. Найвища межа лінійного ряду може бути підвищена використанням мембрани, яка б лімітувала рівень дифузії глюкози до електрода так, що б кінетика зворотньої реакції не залежала від константи спорідненості () ферменту. Принцип медіаторного амперометричного біосенсору було використано для ряду аналізів, вимірюючих спирт(1), СО(35), галактозу, гліколат та амінокислоти(14). Також є дані про використання амперометричного методу для імуноаналізу з використанням ферментного підсилення. Цей імуноаналіз побудований по типу “сендвіча”, де друге антитіло приєднано до лужної фосфатази. Лужна фосфатаза претворює на . включається до відновлювального циклу, вмикаючи дегідрогеназу та діафоразу. Відновлювальний цикл відновлює медіатор ферріцианід, який визначається амперометрично(6).

Оксидоредуктази часто вимогають нікотинаміднуклеотиди в якості кофакторів. Ці дорогі, нестабільні, розчинні компоненти роблять структуру простих, надійних біосенсорів непрактичною.

Потенціометричний ферментний електрод характеризується тим, що різниця потенціалів формується на чутливому елементі і вона вимірюється дуже чутливим приладом, до того ж не виникає току крізь мембрану і тому рівень дифузії не є важливим. Потенціометричні сенсори, що використовуються в біосенсорах, включають іоноселективні електроди, газочутливі електроди та польові транзистори. Іоноселективні та газочутливі електроди вже широко застосовуються в клінічному аналізі(11) і знайшли місце в біосенсорах. Водневий іоноселективний електрод (рН-електрод) був використаний для аналізу пеніциліну, з використанням ферменту беталактамази, яка перетворює пеніцилін на пеніцилову кислоту. Електрод рН визначає концентрацію кислоти(25). Амонійний іоноселективний електрод було використано


Сторінки: 1 2 3 4 5 6