мінливості дає змогу індукувати не лише мінливість геному, але й плазмону. В основі феномену сомаклональної мінливості лежать складні процеси структурної і функціональної перебудови генетичного апарату клітин. Використовуючи його, вже отримано форми багатьох сільськогосподарських культур з цінними ознаками.
Однією із основних проблем в селекційно-генетичних дослідженнях перехреснозапильних рослин є використання гетерозису. Основним і найефективнішим методом отримання стабільних ліній є експериментальна гаплоїдія. Виключаючи багаторазове самозапилення рослин, вона дає можливість отримувати гомозиготний матеріал із збагачених у генетичному відношенні гібридів. Для отримання гаплоїдних рослин використовують культуру пиляків, зав’язі й насіннєвих зачатків. Індукція гаплоїдів залежить від генетичних властивостей рослин-донорів, фази розвитку насінників, місця розташування квітконосів на рослині та ряду інших факторів. Збільшення кількості гаплоїдів спостерігається при вилученні незапліднених насіннєвих зачатків із розкритих квіток, а також при запиленні опроміненим пилком донорських рослин. Гаплоїди виявлені у багатьох сільськогосподарських культур. Спосіб отримання їх у культурі in vitro дає можливість використовувати явище гаплоїдії не тільки в генетичних дослідженнях, але і в практичній селекції.
Гетерогенність клітинної популяції суспензійних культур дає змогу отримати значну варіабельність ознак у рослин-регенерантів і відкриває широкі можливості для генетичних і селекційних досліджень. Хімічні компоненти поживного середовища та фізичні умови можуть виступати і як мутагенні, екстремальні фактори, які викликають зміни в нуклеїновому та білковому обмінах, структурі, формі й функціях клітини. В такому випадку клітинна популяція в умовах культури in vitro характеризується фізіологічною, цитологічною та генетичною гетерогенністю. З’являються мутанти зі зміненим морфогенезом, які можна взяти за основу в селекційно-генетичних дослідженнях. При клітинній селекції відбір клітинних ліній і рослин з новими успадкованими ознаками ведеться на рівні клітин, що культивуються in vitro. Прийоми культивування рослинних клітин і регенерація з них рослин розроблені для ряду важливих сільськогосподарських культур. До них відносяться мутанти стійкості до стресових факторів, гербіцидів, різних захворювань, засолення та закислення субстрату тощо.
У зв’язку з тим, що можливості удосконалення рослин за допомогою рекомбінації практично невичерпні, головним завданням є пошук методів управління цим процесом та ефективного відбору найбільш цінних генотипів з бажаним комплексом ознак і властивостей. Це стало можливим завдяки розробці методів генної інженерії — культури протопластів і соматичної гібридизації, введення генетичного матеріалу в рослинні клітини та протопласти за допомогою трансформованої ДНК. Першим етапом у цьому напрямку досліджень є розробка методу отримання і культивування життєздатних протопластів. При цьому враховується ряд факторів — склад і концентрація ферментів, вибір осмотичного розчину, рН середовища, фізіологічний стан тканини, умови передінкубаційного культивування. Виділені протопласти в подальшому використовують для отримання соматичних гібридів та соматичних цибридів, пересадки органел, введення чужорідної інформації.
Злиття протопластів та соматична гібридизація дають можливість: схрещувати філогенетично віддалені види рослин, які неможливо схрестити звичайним статевим шляхом; отримувати асиметричні гібриди, які несуть весь генний набір одного із батьків поряд з кількома хромосомами, генами чи лише органелами і цитоплазмою другого; створити систему гібридизації, яка включає одночасно злиття трьох і більше батьківських клітин; отримувати рослини, гетерозиготні за неядерними генам; долати обмеження, які накладаються генеративними системами несумісності; схрещувати форми, які неможливо гібридизувати статевим шляхом через аномалії в морфогенезі чи гаметогенезі батьків; гібридизувати клітини, що несуть різні епігенетичні програми. Використовуючи метод соматичної гібридизації ізольованих протопластів, селекціонери отримують гібриди від фізіологічно несумісних видів сільськогосподарських культур.
Провідними факторами, які підвищують продуктивність сільського господарства, є удосконалення способів вирощування рослин, створення більш продуктивних сортів, покращення умов живлення рослин та захист врожаю. В доповнення до селекції більш урожайних і стійких сортів вагомий внесок у підвищення врожаю і його збереженість вносять добрива і засоби захисту рослин.
Генетична інженерія відкриває перед селекцією рослин нові перспективи, зокрема можливість перенесення в них генів від бактерій, грибів, екзотичних рослин і навіть людини та тварини, в тому числі й генів стійкості, що є недосяжним для експериментального мутагенезу та традиційної селекції. Революційним звершенням у генетичній трансформації рослин стало виявлення природного вектору — агробактерій для переносу генів та розробка методу мікробомбардування рослинних об’єктів мікрочастинками металів з попередньо нанесеною чужерідною ДНК. Три видатні досягнення фізіології рослин створили основу для інтеграції технології рекомбінантних ДНК в генно-інженерну біотехнологію рослин. По-перше, відкриття фітогормонів, які регулюють ріст і розвиток рослин. По-друге, розробка методів культивування клітин і тканин рослин in vitro (ці методи дали можливість вирощувати клітини, тканини і цілі рослини в стерильних умовах та проводити їх селекцію на селективних середовищах). По-третє, встановлення феномену тотипотентності соматичних рослинних клітин, який відкрив шлях до регенерації з них цілих рослин.
На сьогоднішній день генетична інженерія сільськогосподарських рослин розвивається переважно в руслі класичної селекції. Основні зусилля вчених зосереджені на захисті рослин від несприятливих (біотичних та абіотичних) факторів, покращенні якості та зменшенні втрат при зберіганні продукції рослинництва. Зокрема, це підвищення стійкості проти хвороб, шкідників, заморозків, солонцюватості ґрунту тощо, видалення небажаних компонентів із рослинних олій, зміна властивостей білку і крохмалю в пшеничному борошні, покращення лежкості та смакових якостей овочів та ін. Порівняно з традиційною селекцією, основними інструментами якої є схрещування і відбір, генна інженерія дає можливість використання принципово нових генів, які визначають агрономічно важливі ознаки, і нових молекулярно-генетичних методів моніторингу трансгенів (молекулярні маркери генів), що в багато разів прискорюють процес створення трансгенних рослин. Селекціонерів приваблює можливість цілеспрямованого генетичного “ремонту” рослин. Важливим направленням є створення генетично модифікованих рослин (ГМР) з ознакою чоловічої стерильності. Крім того, завдяки генетичній модифікації рослини можуть виконувати не властиву