У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент





Зауваження щодо дисертації та автореферату

ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРСИТЕТ

ТЕРНОПІЛЬСЬКИЙ ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

МАКАРОВ СЕРГІЙ МИКОЛАЙОВИЧ

УДК 621.941.1

ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МЕХАНІЧНОЇ ОБРОБКИ

ДЕТАЛЕЙ З ВИКОРИСТАННЯМ ПОЛІМЕРВМІСНИХ МОТЗ

Спеціальність 05.02.08 - технологія машинобудування

Автореферат

дисертації на здобуття наукового ступеня

кандидата технічних наук

Одеса - 2008 р.

Дисертацією є рукописом.

Робота виконана на кафедрі технології машинобудування Херсонського національного технічного університета Міністерства освіти і науки України.

Науковий керівник: доктор технічних наук, професор,

Сошко Олександр Іванович

Херсонський національний технічний університет,

завідувач кафедри технології машинобудування

Офіційні опоненти: доктор технічних наук, професор

Ларшин Василь Петрович,

Одеський національний політехнічний університет,

професор кафедри технології машинобудування,

кандидат технічних наук,

Рижов Юрій Едуардович,

Інститут надтвердих матеріалів імені В.М. Бакуля

НАН України, старший науковий співробітник.

Захист відбудеться “27“ червня 2008 р. о 14.00 годині на засіданні спеціалізованої вченої ради Д 41.052.02 при Одеському національному політехнічному університеті за адресою: 65044, м. Одеса, просп. Шевченка, 1

З дисертацією можна ознайомитись у бібліотеці Одеського національного політехнічного університету за адресою: 65044, м. Одеса, просп. Шевченка, 1

Автореферат розісланий “27“ травня 2008 р.

Вчений секретар

спеціалізованої вченої ради Г.О. Оборський

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Характерною світовою й вітчизняною тенденцією нашого часу є неухильне подорожчання продовольчих і енергетичних ресурсів. У цьому зв'язку розвиток прогресивних технологій виготовлення продукції сільськогосподарського машинобудування безсумнівно ставиться до стратегічного напрямку розвитку АПК України. Застосування мастильно-охолоджуючих технологічних засобів (МОТЗ) у технології виготовлення відповідальних деталей сільскогосподарських машин є одним із способів покращення якості їхньої обробки тобто якості поверхні та поверхневого шару деталей, а також точності обробки.

З багаточисельних результатів досліджень по даній проблемі слід відмітити напрямок по використанню у якості ефективних присадок до МОТЗ високомолекулярних сполук завдяки їх глибокого та багатобічного впливу на фізико-хімічні і механічні процеси і явища, що відбуваються в зоні різання.

Досвід впровадження таких МОТЗ показав, що вони значно покращують кількісні значення оброблювання сталей. Оскільки оброблюваність сталей обумовлюється критеріями інтенсивності зносу інструменту, який залежить від параметрів механічної обробки, значень сили різання і температури, а також набуттям при обробці якості поверхневого шару металу, тому ефективність МОТЗ оцінювалася шляхом порівняння цих параметрів, визначених при різних видах механічної обробки в МОТЗ з добавками полімеру і без нього.

Слід відмітити, що науковий підхід до створення високоефективних МОТЗ можливий при умові вивчення фізико-хімічних особливостей та закономірностей взаємодії елементів системи «МОТЗ-оброблюваний матеріал-інструмент». На даний час значну ефективність дії МОТЗ на основі полімеру пояснюють піролітичним перетворенням високомолекулярної добавки до МОТЗ, що в кінцевому етапі приводить до утворення водню і вуглецю в атомарній, або іншій активній формі. Виходячи із цього була висунута гіпотеза про перманентну карбонізацію ріжучої крайки інструменту та наводнюванню матеріалу заготівки. При вирішенні цієї проблеми на користь висунутої гіпотези були отримані деякі експериментальні результати, але вони, безумовно, потребують подальшої проробки та апробації. Пізнання законів такого виключно складного по своїй багатоплановості та екстремальності умов протікання процесу при неперервному поливі рідиною з декількома десятками розчинених і емульгованих у неї компонентів, надзвичайно утруднено експериментально.

Мабуть, тому до цього часу нема експериментального доказу про наявність водню в зоні різання та його можливий вплив на механічні властивості пластично деформованого металу перед лезом інструменту. Тому подальше вивчення фізико-хімічних процесів і явищ у зоні різання, створення високоефективних середовищ для вирішення питань підвищення продуктивності, покращення якості обробки та зменшення його трудомісткості, а також їх практична реалізація є актуальними і перспективними . В цій частині при виконанні дисертаційної роботи було виділено і розглянуто ряд задач, рішення яких дає можливість продвинутися в даному питанні. Серед них найбільш важливі є – виявлення детального складу газоподібних продуктів перетворення полімерної присадки до МОТЗ в зоні різання, кількісна оцінка трибологічної активності цих газів та вплив складової суміші хімічних елементів на параметри і характеристики механічної обробки сталей.

Зв’язок роботи з науковими програмами, планами, темами. Основні етапи дисертації виконані відповідно до планів науково-дослідних робіт кафедри машинобудування Херсонського Національного технічного університету Міністерства освіти і науки України, № ДР01051007230 на тему «Підвищення ефективності механічної обробки деталей із застосуванням полімервмісних мастильно-охолоджуючих технологічних засобів», а також за темою: «Фізико-хімічні основи прискорення легування твердого тіла під час його пластичної деформації», утвердженого рішенням експертної ради при НАН України № 2 від 25.12.2006. Дисертаційна робота також пов’язана з виконанням Постанови Кабінету Міністрів України від 17.05.96 р. № 538 «Про прискорення створення й організації виробництва вітчизняного зернозбирального комбайну».

Мета і завдання дослідження. Метою роботи є підвищення продуктивності й якості механічної обробки деталей та покращення їх експлуатаційних властивостей, шляхом застосування в складі МОТЗ спеціальної додаткової компоненти на основі високомолекулярної сполуки певного фізико-хімічного складу й концентрації.

Для досягнення вказаної мети необхідно вирішити наступні задачі:

- розробити методику дослідження, для вивчення впливу рідких та газових середовищ на параметри процесу різання (з урахуванням взаємодії з металом елементів деструктуємої полімерної присадки до МОТЗ під час різання);

- установити фізико-хімічні принципи вибору складових полімерної присадки до МОТЗ, закономірності впливу складу полімерної МОТЗ на технологічні та енергосилові параметри процесу різання в залежності від його хімічного складу й деяких механічних властивостей;

- виявити закономірності впливу складу МОТЗ на технологічну спадкоємність поверхневого шару металу, що формує експлуатаційні характеристики деталей;

- запропонувати схему механізму різання сталей у присутності МОТЗ із полімерною добавкою;

- розробити рекомендації до створення нормативно-технологічної документації з механічної обробки деталей, впровадити результати дисертаційної роботи й провести промислове їх випробування.

Об’єкт дослідження – технологічні операції механічної обробки деталей сільськогосподарського машинобудування із застосуванням полимервмісних МОТЗ.

Предмет дослідження – вплив полімерної присадки до МОТЗ на продуктивність й якість механічної обробки деталей.

Методи дослідження. Теоретичні дослідження здійснювалися на базі наукових основ технології машинобудування і, зокрема, технології різання матеріалів, а також теорій механохімічних та плазмохімічних процесів при різанні. Експериментальні дослідження впливу МОТЗ на оброблюваність сталей різанням проводили за допомогою математично-статистичного метода багатофакторного експерименту, а також з використанням профілографії, мікроструктурного та рентгеноструктурного аналізів, ОЖЕ-спектроскопії обробленого матеріалу і рентгенофазового аналізу леза інструменту. Кінетику піролітичної деструкції полімерної компоненти МОТЗ визначали під час різання з використанням газової хроматографії. Дифузію водню в метал, що деформується лезом інструмента, вивчали за допомогою мас-спектрометра (за методикою температурно-програмного нагріву зразку). Для оцінки впливу газових середовищ (утворюються в зоні механічної обробки при розкладі полімерної МОТЗ) на параметри різання виготовлена спеціальна гермокамера, конструкція якої дозволяє компонувати її з металообробним верстатом.

Наукова новизна одержаних результатів.

1. Теоретично й експериментально доведено вплив полімервмісних МОТЗ на збільшення зносостійкості різального інструменту і, як наслідок, на збільшення продуктивності й точності обробки деталей. Встановлені залежності зносостійкості інструменту, енергосилових характеристик та параметрів технологічної спадкоємності обробленої поверхні деталей сільгоспмашинобудування, від технологічних параметрів різання - швидкості різання, подачі й глибини різання.

2. Доведено, що під дією температури в зоні різання відбувається деструкція полімерного компоненту МОТЗ. Якщо в якості добавки до МОТЗ використовувати полівінілхлорид (ПВХ), деполімеризація полімеру йде з утворенням суміші високоактивних газоподібних продуктів - насичених і перенасичених вуглеводів, водню та пірополімерного залишку. Суміш хімічно активних елементів може вступати у слідуючи вторинні процеси і явища: при взаємодії водню і хлору створюється з’єднання HCl, яке адсорбується на ювенільній поверхні сталі з утворенням неорганічної солі FeCl2 , а при її окисленні – FeCl3. Під дією температури в зоні різання ці солі плавляться з утворенням на поверхнях тертя плівки з малим опором зсуву, що зменшує коефіцієнт тертя.

3. Встановлено, що після адсорбції, відбувається активна дифузія водню в метал, в зону максимальної концентрації механічних напруг. При цьому можливі наступні процеси і явища:

- в результаті хемосорбції водню знижується рівень поверхневої енергії металу;

- при дифузії водню у гратку металу відбувається її викривлення, що створює додаткові пружні напруги;

- дифузія водню по дефектам металу та його молезація може створювати в цих місцях не тільки пружні, але й пластичні деформації;

- у результаті взаємодії водню з елементами, якими легована сталь, можуть створюватися гідриди – хімічні крихкі з’єднання з гіршими механічними властивостями (у порівнянні з оброблюваним матеріалом).

4. Досліджені в роботі процеси і явища, що виникають у зоні різання при обробці деталей в полімерному МОТЗ дали підставу розглядати цю механічну обробку, як механохімічну, яка відтворюється в результаті спрямованої дії активних хімічних елементів МОТЗ.

Практичне значення одержаних результатів полягає у визначені умов та режимів механічної обробки деталей сільгоспмашинобудування в полімерних МОТЗ. Показано, що добавка до МОТЗ полімеру певної фізично-хімічної властивості й концентрації може збільшити зносостійкість інструменту при зменшенні енергетичних витрат до 30% і покращення показників якості обробленої поверхні. Розроблені рекомендації щодо корекції технологічних параметрів механічної обробки сталевих деталей з урахуванням дії полімерної МОТЗ. По тематиці дисертаційної роботи отримано два патенти України.

Результати наукових досліджень передані департаменту тракторного і сільськогосподарського машинобудування Міністерства промислової політики України для використання в організаційно-технологічній підготовці виробництва на підприємствах сільгоспмашинобудування.

Особистий внесок здобувача полягає в постановці і обґрунтуванні актуальності і доцільності роботи, практичному аналізі наукової та патентної інформації, що дозволило сформулювати мету роботи і завдання, які потрібно вирішити для її досягнення; в створенні гермокамери та розробці методики дослідження процесу різання у вакуумі та газових середовищах Під керівництвом та при безпосередній участі автора досліджена зносостійкість різального інструменту в залежності від хімскладу сталі, її механічних властивостей, при різних значеннях швидкості, подачі та глибини різання в умовах дії полімерної МОТЗ; визначені умови і режими механічної обробки деталей в полімерних МОТЗ та розроблені рекомендації щодо розрахунку технологічних характеристик обробки сталей.

Апробація результатів дисертації. Основні результати дисертаційної роботи доповідалися та обговорювалися на міжнародних науково-технічних конференціях та семінарах: «Нові технології, методи обробки та зміцнення деталей енергетичних установок» (м. Алушта, 2004 р.); «Техніко-технологічні аспекти розвитку та випробування нової техніки й технологій для сільського господарства України» (2004-2005 р.); «Машинобудування й техносфера 21століття» (м. Севастополь, 2005 р.); сьомої та дев’ятої міжнародної практичної конференції-виставки «Технологія ремонту, відновлення й зміцнення деталей машин, механізмів, обладнання, інструменту й технологічної оснастки» (м. С.Петербург, 2005 р, 2007 р.); «Техніко-технологічні аспекти розвитку випробувань нової техніки та технології для сільського господарства України” (Київ, 2004 р.); «Обмін досвідом: технологія машинобудування» (м. Харків, 2005 р); розширених засіданнях кафедри «Технологія машинобудування» ХНТУ (м. Херсон, 2005, 2006р.) та науково-технічному семінарі ВАТ «Херсонські комбайни». (м. Херсон, 2004 р.), а також на науково-теоретичному семінарі в ІНМ ім. В.М. Бакуля НАНУ (2007 р.).

Публікації за темою дисертації. За результатами дослідження опубліковано 11 наукових робіт у провідних фахових виданнях і два патенти України.

Структура та обсяг дисертації. Дисертація складається із вступу, шести розділів, загальних висновків, додатків. Повний обсяг дисертаційної роботи складає 133 сторінки, з них 9 таблиць за текстом, 37 рисунків на 24 сторінках, 3 рисунків за текстом, додатки на 59 сторінках, список використаних літературних джерел з 188 найменувань на 13 сторінках.

ОСНОВНИЙ ЗМІСТ РОБОТИ

Вступ містить обґрунтування актуальності роботи, формулювання мети і завдань дослідження, розкрито сутність і стан наукової проблеми та її значення, сформульовано ряд основних положень, що виносяться на захист, представлене практичне значення отриманих результатів.

У першому розділі проведено аналіз сучасного стану наукових досліджень про вплив МОТЗ на процес різання при механічної обробці деталей машин. Проведено аналіз літератури по впливу МОТЗ на вибір швидкості й режимів різання при механічній обробці різанням. Установлено можливість збільшення швидкості різання при наявності МОТЗ. Висловлено гіпотезу про те, що позитивний вплив МОТЗ проявляється через збільшення розмірної стійкості інструмента, що входить як окремий параметр у математичну модель процесу. Проведено аналіз досліджень відомих наукових шкіл (Петров М.П., Резніков А.М., Фукс Г.І., Латишев В.Н., Наумов А.Г., Подгорков В.В., Мельников В.Г., Худобін Л.В., Ентеліс С.Г., Берлінер В.М. Чеповецький І.Х., Клименко С.А., Сошко О.І., Рижов Ю.Е. Шаповал Б.С., Стулий А.А.). Показано, що кількості теплоти, що виділяється в зоні різання, достатньо для проходження термодеструкції полімерної компоненти МОТЗ із виділенням газової суміші. Перші експериментальні дані, що отримані при вивченні цієї проблеми, свідчать про те, що деякі гази, що виділяються при піролізі полімерної присадки до МОТЗ (емульсії поліетилену або поліхлорвінілу) демонструють трибологічну активність, яка проявляється в зменшені крутного моменту при точінні сталі в атмосфері відповідного газу. Показано також, що ланцюг піролітичних перетворень закінчується утворенням водню й вуглецю в активній формі. У свою чергу водень створює гідриди (з металами групи IVB, VB, VIB) та істині розчини (з хромом, залізом, нікелем, молібденом та ін.). Зроблено припущення, що саме водень і відповідає за ефекти, які спостерігаються при використанні полімерної МОТЗ. Разом із тим, до цього часу нема підтверджуючих експериментальних даних, які б свідчили про головну роль водню в прояві високої ефективності полімерної МОТЗ. Показано, що в зоні різання одночасно проходять слідуючи явища: з одного боку, безперервно оновлюється оброблювальна поверхня з утворенням ювенільної, мозаїчної поверхні заліза з легованими, хімічно активними до водню елементами (хрому, нікелю, вуглецю та іншими) з одночасною емісією електронів і виділенням тепла, а з другого – створюються хімічно активні елементи в результаті термодеструкції полімерної складової МОТЗ, які взаємодіють з цією поверхнею. Наведений аналіз досліджень дає підставу прогнозувати, що питання впливу полімерної МОТЗ на процес різання з часом може стати складовою відомого поважного наукового напряму який вивчає проблеми водневої крихкості металу.

Приведений аналітичний огляд наукових праць свідчить про перспективність МОТЗ на основі полімерів і дозволив сформулювати мету, і задачі досліджень.

У другому розділі на основі аналізу відомої математичної моделі процесу різання отримана загальна формула для визначення швидкості різання з урахуванням фактора МОТЗ

, (1)

де – збільшена швидкість різання, яка забезпечує необхідну (зменшену до базового рівня) стійкість ріжучого інструменту, м/хв; ,,,, – коефіцієнти; , – глибина різання (мм) і подача (мм/об); – коефіцієнт технологічної ефективності МОТЗ, який ураховує її вплив на режими різання, . Причому

, (2)

де , – новий (із застосуванням нового МОТЗ) і базовий (із застосуванням базового МОТЗ) періоди стійкості різального інструменту.

Надається методика визначення коефіцієнта із порівняння кривих зносу для базового (традиційного) и розробленого (нового) МОТЗ.

Обґрунтовано вибір сталей для дослідження, які використовуються як оброблюваний матеріал при виготовленні типових деталей сільськогосподарського машинобудування. Наведено методи досліджень та прилади. Автором запропонована гіпотеза, за якою стверджується, що при обробці деталей з полімерними МОТЗ у зоні обробки (під дією підвищеної температури) полімерна компонента МОТЗ підлягає деструкції і на кінцевої стадії процесу утворюється газова система, у якій протікають плазмохімічні процеси.

Для експериментального визначення впливу цього явища на характеристики механічної обробки розроблено й виготовлено вакуумну гермокамеру (рис.1), в якій відбувалося точіння та свердління зразків у різних середовищах.

 

Рис. 1. Зовнішній вигляд гермокамери: 1 – фланець кріплення для вводу руху верстату; 2 – фланець кріплення для установки тензометричного блоку; 3 – оглядове вікно; 4 – штуцер для вакуумної установки; 5 – шпиндель; 6 – штуцер для відводу газів; 7 – тензометричний блок.

В цих експериментах, контроль та заточення інструменту здійснювали за відомими стандартами. Знос різального інструменту вимірювали на інструментальному мікроскопі МІМ-2. За допомогою мікроскопу також виконувався контроль заточення свердла. Затуплення різця визначали за найбільш зношеними ділянками задніх поверхонь інструменту, а за критерій затуплення свердла приймався знос (0,4…0,8 мм) задньої грані. За такий же спосіб проводили оцінку зносу інструменту при випробуваннях на промисловому обладнанні.

В основу методики визначення ефективності МОТЗ при хонінгуванні покладена оцінка зносу хон-брусків та шорсткість оброблювальних поверхонь.

Для заміру складових сили різання при точінні використовували динамометр - різець на якому клеїли активні та компенсаційні тензодатчики. У якості добавок до промислових МОТЗ, або для створення нових полімерних МОТЗ використовували поліетиленову емульсію ОКСАЛЕН-80 молекулярної маси 100000 та емульсію полівінілхлориду (ПВХ). Оцінка трибологічної активності газів також виконувалась за допомогою гермокамери – приставки до токарного верстату із пристосуванням для виміру крутних моментів (рис.1).

Газова фракція, що утворювалася в зоні різання на кінцевій стадії перетворень макроланцюгів полімеру, який входив до складу у МОТЗ аналізувалася на газовому хроматографі СНRОМ-5. Висока чутливість хроматографа дозволяла ідентифікувати гази, які присутні в кількості не менше 10 моль.

Для виявлення водню, який утворювався під час термомеханодеструкції полімерної присадки до МОТЗ, було використано метод температурно-програмованого нагріву (ТПН) зразку полімеру, який розташовувався у вакуумній камері, з одночасною масспектрометричною реєстрацією. Такий аналіз виконувався при пластичній деформації зразків сталі під дією зусиль тиску та при різанні сталі в термокамері. У роботі використовувалися також відомі методи аналізу тонкої кристалічної структури металу після механічної обробки, хімічного складу поверхневих шарів металу (ОЖЕ-спектроскопія), залишкових напружень, мікротвердості тощо. В результаті математично-статистичної обробки експериментальних даних було отримано групу параметрів, які характеризують із заданою імовірністю результати дії двох зразків порівняльних МОТЗ.

Наведена методика математичного моделювання ефективності дії МОТЗ з отриманням регресійних моделей складової системи впливу МОТЗ на процес різання стальних деталей за рахунок багатофакторного експерименту і використанням алгоритму RASTA 3, програмного засобу ПС ПРИАМ (розробка НТУУ «КПІ»).

Третій розділ присвячено експериментальним дослідженням, проведення яких дозволило виявити ефективність дії полімерної МОТЗ на процес різання в залежності від параметрів механічної обробки та фізико-хімічних і механічних властивостей оброблюваного матеріалу. Широку номенклатуру сталей з різноманітними характеристиками умовно було поділено на три групи за ознакою їх хімічних і механічних властивостей, що дало можливість випробовувати в експерименті не всю безліч сталей, що входять в дану групу, а його окремого, найбільш типового представника. Вибіркові експерименти підтвердили правдивість такого рішення, оскільки випробування сталей із граничними властивостями кожної групи показали розбіжність між ними, яка не перевищувала 10%. До сталей першої групи були віднесені вуглецеві якісні

конструкційні сталі, які термооброблювалися на твердість 160-180 НВ. Друга група – конструкційні леговані сталі з твердістю 180-200 НВ і третя група сталей – інструментальні леговані, які мали твердість після термообробки 220-240 НВ. Вплив полімерної присадки до МОТЗ на оброблювання трьох груп сталей визначали шляхом їх механічної обробки на операціях точіння, фрезерування, свердління, різьбонарізання, зубофрезерування, шліфування, хонінгування за допомогою МОТЗ різного складу. Випробувались наступні склади технологічної рідини.

1. Відомий склад (а.с. № 667582): латекс полівінілхлориду – 3%; нітрат натрію – 0,1%; тріетаноламін – 0,1%; поліоксіетільований спирт – 0,1%; вода – до 100%.

2. Модельні середовища на основі води з добавкою полімеру, а також гази, хімічний склад яких відповідає складу продуктів деполімеризації компоненти в МОТЗ.

3. На основі індустріальної олії з добавкою 1,0 % поліетилену (оптимальна концентрація полімеру визначалась експериментально) ;

4. На основі товарного емульсолу ЕТ-2 з добавкою 2% латексу ПВХ.

Точіння здійснювалося твердосплавним прохідним різцем ( = 60, = 100, = 750) перетином 25-20 мм. За критерій зношування інструмента було прийняте знос (0,3 мм) по задній поверхні. Контроль зношування виконувався з точністю 0,01 мм на інструментальному мікроскопі. Шорсткість поверхні визначалася профілометром моделі «Калібр 253».

Торцеве фрезерування виконувалося торцевою фрезою (діаметр 100 мм, твердосплавні ножи зі сплаву Т5К10, число зубів 6, геометрія зуба: = 50, = 150 ) при S = 300 мм/хв, = 157 м/хв і різних значеннях глибини різання .

Свердління проводилося свердлом Р6М5 діаметром 3 мм при = 6 м/хв і = 0,2 мм/об.

Вплив діаметра свердла на ефективність впливу МОТЗ оцінювали при цих же режимах механічної обробки.

Для зручності оцінки МОТЗ використовувались безрозмірні коефіцієнти (відношення характеристик в полімерних МОТЗ і без полімерної присадки) впливу середовища: ЕТ – зносостікійсть інструменту; ЕШ – шорсткість обробленої поверхні; Еn – потужність різання.

Надані результати дослідів по виявленню закономірності зміни стійкості металорізального інструменту та енергосилових характеристик при різних режимах та видах механічної обробки (точіння, свердління, торцеве фрезерування) у залежності від присутності в МОТЗ високомолекулярної сполуки. Проведені досліди показали, що у всіх випадках полімерна присадка до МОТЗ забезпечує значне підвищення зносостійкості інструменту.

На рисунках наведені результати експерименту з оцінки ефективності дії МОТЗ на стійкість інструменту Ет (рис.2, а), витрату потужності на процес механічної обробки Еn (рис.2,б) та шорсткість обробленої поверхні Еш (рис.2,в). По осі ординат відкладені значення зміни дослідної характеристики у вигляді коефіцієнту Е.

Коефіцієнт Е вираховувався, як відношення значення визначаємої характеристики при обробки в МОТЗ з добавкою полімеру до значення цієї ж характеристики, отриманої при обробки сталі з базової (вихідної) МОТЗ.

Результати експерименту свідчать про те, що при точінні зі збільшенням подачі від 0,01 до 0,14 мм/об відбувається істотний вплив дії полімерної добавки до МОТЗ на головні технологічні характеристики процесу точіння, що відбивається на збільшенні коефіцієнтів Ет, Еn i Eш (рис.2, а,б,в). При збільшенні подачі, вплив полімерної присадки майже не збільшується.

Слід відмітити, що характер дії полімерної добавки до МОТЗ на коефіцієнти Ет, Еn i Eш в залежності від значення

швидкості точіння – подібний до характеристик залежності коефіцієнтів ефективності від подачи S.

Як видно з наведених даних, ефективність дії полімерної присадки до МОТЗ проявляється при механічній обробці деталей із сталей усіх трьох груп, але кількісне значення визначаючих характеристик (ефективність дії полімерної МОТЗ) значно залежить від хімічного складу та твердості матеріалу оброблюваних деталей.

Це пояснюєься тим, що дія полімерної присадки на обро-блюваність сталей пов’язана із багатостадійними процесами руйнування макроланцюга полімеру з утворенням активних хімічних елементів, а швидкість їх утворення та концентрація залежить від температури в області різання. В той же час температура в зоні об-робки, як правило, збільшується із підвищен-ням швидкості, подачі та глибини різання, а також механічних властивостей сталей. Тому і коефіцієнти ефективності дії МОТЗ збільшуються із підвищенням швидкості обробки, подачі й глибини.

У відмінності від точіння, коли тепловий режим роботи леза стає практично незмінним (температура в зоні обробки не змінюється), торцеве фрезерування являє собою переривчастий процес. Циклічне охолодження леза інструмента при вільному пробігу зуба фрези приводить до зниження середньої температури різання. Тому, в цьому випадку ефективність дії полімерної МОТЗ на 30-70 % менше. Разом з тим ефективність МОТЗ змінюється (збільшується) із збільшенням швидкості та майже не змінюється в залежності від подачі.

При свердлінні відбувається різання в суцільній масі металу в утруднених умовах відводу стружки, що приводить до деякого збільшення частки тепла, що поглинає свердло. Тому у цих умовах дія полімерної добавки до МОТЗ найбільш ефективна. Так, наприклад, якщо при точінні найбільше значення коефіцієнта Ет для сталей І, ІІ та ІІІ групи змінюється від 1,5 до 3,5, то при свердлінні при аналогічних умовах експерименту величина Ет змінюється від 2 до 5.

Як показали випробування вміст вуглецю у сталі майже не впливає на значення Ет. У той же час, легуючи елементи Ni і Cr збільшують Ет від 1,4 до 3,2 раз, що пов’язано з великою хімічною активністю цих елементів до водню, який утворюється при деструкції полімеру під дією температури в зоні різання. Ця взаємодія може проявлятися у високій адсорбційній властивості водню, доброю його проникливістю в гратку заліза, можливості створення хімічних з’єднань (гідридів) з Ni та Сr.

Таким чином проведені досліди показали, що застосування полімерних МОТЗ для лезвійної обробки сталей дозволяють істотно підвищити стійкість різального інструменту, зменшити шорсткість обробленої поверхні й енергетичні витрати на процес механічної обробки. При цьому ефективність впливу полімерної добавки до МОТЗ залежить від механічних властивостей та хімічного складу оброблюваного матеріалу, виду механічної обробки (точіння, фрезерування, свердління), режиму різання.

Висока ефективність та універсальність дії полімерної МОТЗ обумовлена наявністю в його складі розчинених, або диспергованих присадок високомолекулярних з’єднань, які проходять стадії перетворень – так званий процес термомеханодеструкції в зоні механічної обробки. Ці перетворення виникають під впливом різних ініціаторів – температури в зоні різання, тертя та емісії електронів із обробляємого матеріалу під час його руйнування.

Відомо, що під час хімічних перетворень полімеру утворюються з’єднання високої хімічної активності, які хоча й не дають відразу кінцевих продуктів, але беруть участь у різних процесах перехідного характеру не тільки в полімерній системі, але й на каталітично активній поверхні металу. Все це в остаточному підсумку приводить до утворення й нагромадження в зоні обробки різних хімічно активних продуктів. Якщо ланцюг полімеру складається з атомів водню і вуглецю (якщо у складі МОТЗ є поліетилен), або атомів водню, вуглецю і хлору (якщо у складі МОТЗ є полівінілхлорид), то є підстави стверджувати, що хімічно активні елементи цих атомів і накопичуються в зоні обробки.

Так, наприклад, якщо у складі МОТЗ є поліетилен, то він починає розкладатися вже при температурі 290°С. При підвищенні температури молекулярна маса поліетилену зменшується, що свідчить про його деструкцію. При температурі 360 С0 відбувається швидке створення летючих речовин. При цьому створюються непредільні групи трьох типів: RCH=CHRI , RRIC=СH2 та RCH=CH2. Подальші перетворення макромолекулярних радикалів відбуваються із утворюванням водню, кількість якого в загальної кількості газоподібних продуктів може наближатися до 95%.

Надані результати дослідів по визначенню впливу абразивної обробки, різальним елементом якої є зерна абразивних матеріалів. Проводилося хонінгування деталей із чавуну (СЧ-18-36, НВ 170-180) у МОТЗ з добавкою полімеру у порівнянні з промисловою МОТЗ (70% гасу та 30% веретенного мастила): хон-бруски типу АБХ, величина шару, що знімається (по діаметру деталі) дорівнювалося 0,15 мм. Шорсткість зменшилася на 15% і при цьому питома витрата алмазу зменшилася приблизно у 2 рази. При хонінгуванні деталей із сталі 40Х (НRС 48-50), при величині шару, що знімається 0,1 мм, шорсткість зменшилася приблизно на 25%, а питома витрата алмазу зменшилася понад 2 рази. Висока ефективність МОТЗ з полімером була доведена також при хонінгуванні брусками типу АРС різної зернистості при різному знімання шару.

При багатофакторному плануванні експерименту отримані рівняння регресії.

 

 

(6)

де d – діаметр свердла, МК- – групи конструкційних матеріалів, х1,х2,z1,z2 – ортогональні контрасти.

Наприклад:

де х1=0,0689655*(Х1-24,5);

х2=1*(Х2-2);

z1=2,19762*((x1^2)+0,079863*x1-0,52679);

z2=1,5*((x2^2)-0.666667).

Зроблено наступні висновки.

1. Всі досліджувані фактори (S, V, МК-) статистично значимо впливають на критерії якості ЕТ, ЕШ, ЕП оброблюваних деталей;

2. Вплив факторів виявляється на рівні головних ефектів – лінійних х1, х2 та квадратичних z1, z2. Взаємодія факторів виявляється тільки в одній з одинадцяти моделей у вигляді х1, х2;

3. Аналіз моделей показав, що досліджувані МОТЗ у випадку точіння підвищують стійкість різального інструменту до 3,8 разів, зменшують енергоспоживання до 1,42 рази, знижують шорсткість обробленої поверхні у 1,8 разів. Отримані математичні моделі можливо використовувати для прогнозування впливу складу МОТЗ на показники ЕТ, ЕШ, Еn.

У четвертому розділі розглянуто вплив полімерних присадок до МОТЗ на механічний і фізичний стан оброблених у таких МОТЗ металевих поверхонь, який у багатьох випадках обумовлює експлуатаційні властивості деталей машин. Тому, будь-які МОТЗ повинні не тільки покращувати оброблюваність сталей, але й після механічної обробки в таких МОТЗ повинні створюватися такі поверхневі шари які б забезпечували відповідні експлуатаційні характеристики виробів. До найбільш важливих показників якості поверхневих шарів, які створюються після механічної обробки слід віднести шорсткість поверхні, макро- і мікротвердість, тонку кристалічну структуру, залишкові макро- і мікронапруги.

Профілограми обробленої поверхні сталі при точінні свідчать про те, що шорсткість її поверхні після обробки в МОТЗ з добавкою полімеру значно краща ніж після обробки в МОТЗ без полімеру. Слід відмітити, ці результати не є виняток і зменшення шорсткості і покращення чистоти поверхні після обробки сталі відбувається у всіх випадках, коли процес механічної обробки проходить з допомогою полімерної МОТЗ.

Покращення якості поверхні сталі після точіння в полімерної МОТЗ (в порівнянні із МОТЗ без полімеру) можна пояснювати впливом водню на метал, що пластично деформується лезом інструменту, а також тим, що вплив водню на сталь, яка деформується, проявляється у збільшенні її крихкості.

Результати дослідів (табл. 1) свідчать про те, що мікротвердість поверхні сталей зменшується із підвищенням макротвердості і цей характер не залежить від типу МОТЗ, в якій проводилася механічна обробка матеріалу, змінюються тільки кількісні значення.

Таблиця 1

Мікротвердість сталі після точіння в різних МОТЗ

Матеріал | Макро-твердість

зразків | Мікротвердість (ГПа) при використанні в якості МОТЗ

Вода | Вода+Латекс полівінілхлорид | Мастило И-12 | Мастило И-12А

+поліетилен

Сталь 1 гр.

Сталь 2 гр.

Сталь 3 гр. | 160-180 НВ

180-200 НВ

220-240 НВ | 0,49

0,96

1,42 | 0,44

0,74

1,23 | 0,46

0,67

1,08 | 0,41

0,51

0,82

Характерним для отриманих залежностей є те, що хоча введення полімеру в МОТЗ приводить до зниження мікротвердості на поверхні, однак вже на глибині приблизно 10 мкм мікротвердість сталі 1-ї групи при її обробці в середовищі з полімером стає більше, ніж після обробки в середовищі без полімеру. Причому підвищення мікротвердості зберігається на досить великій відстані від поверхні (приблизно до 35 мкм). Аналогічний характер розподілу мікротвердості зберігається й для інших груп сталей, але ця характеристика відрізняється тільки в кількісному відношенні.

Дослідження структури сталей різної твердості, до й після обробки в різних МОТЗ показали, що при точінні сталі різної твердості в полимервмісної МОТЗ, у відмінність від МОТЗ без полімеру, у поверхневому шарі зразків утворюються зміцнені шари на різній глибині.

Так на зразках сорбитній (160…180 НВ) і трооститній структури (180…200 НВ) глибина зміцненого шару досягає 35…40 мкм, і в мікроструктурі спостерігаються пластично деформовані шари більш високої мікротвердості в порівнянні із серцевиною зразка. На зразках зі сталі мартенситної структури (220…240 НВ) на глибині 10 мкм утворюються білі шари, які не витравлюються травником. Причому зі збільшенням подачі (S) глибина зміцнених шарів зростає від 3 до 10 мкм. Ці шари являють собою дисперсні карбіди, залишковий аустеніт, розмір часток якого на порядок менше в порівнянні зі звичайним гартуванням, і сильно дисперсний мартенсит.

У той же час наявність на глибині пластичних деформацій при точінні сталі сорбитній і трооститній структур після обробки в полімервмісних МОТЗ можна пояснити впливом активних низькомолекулярних вуглеводних продуктів, і головним чином, водню, на процес пластичного деформування.

Поєднання високих температур і тиску в зоні взаємодії леза інструменту, або абразивного зерна зі сталлю, а також наявність пластичної деформації приводять до істотних змін структури, фізичних і механічних властивостей металу. У деяких випадках може виявитися технологічна спадковість від попередніх механічних операцій особливо при малих припусках обробки та на доводочних процесах (шліфування, хонінгування, суперфінішні операції).

Використовуючи рентгенографічний аналіз, визначали величину блоків мозаїк, зміну викривлення другого роду й вміст залишкового аустеніту. При шліфуванні сталі трооститної або трооститно-мартенситної структури виникають залишкові напруги стиску, як у МОТЗ з полімером, так і без нього. У першому випадку напруги, що виникають, помітно більші по величині (рис. 3). Це можна пояснити тим, що в даному випадку має місце зміна фазового складу, за рахунок можливого перетворення залишкового аустеніту в мартенсит, виділення з нього вуглецю, дифузії вуглецю ззовні в оброблюваний метал, а в багатьох випадках і вторинному загартуванні поверхневого шару сталі. Усе це збільшує питомий обсяг металу й залишкові напруги стиску, що повинні підвищувати працездатність виробів в експлуатації.

Шліфування у МОТЗ без полімеру супроводжується більш значними температурами й тиском в зоні контакту „абразивний інструмент-деталь” в порівнянні з МОТЗ з полімером, при цьому росте структурна неоднорідність, збільшується кількість залишкового аустеніту, що утворюється в результаті вторинного загартування.

Збільшення блоків мозаїк у поверхневих шарах зразків після шліфування у МОТЗ без полімеру викликано відпуском сталі. Однак наявність тут великих викривлень другого роду й блоків мозаїки пояснюється тим, що на ріст блоку у даному випадку переважний вплив чинить температура, у той час як на викривлення другого роду – температура й тиск, що підсилює деформацію металу.

При механічній обробці в МОТЗ з полімером відбувається зниження вмісту вуглецю у твердому розчині заліза (мартенсит) приводить до зменшення викривлення другого роду, а пластична й пружна деформація, які виникають під час обробки в процесі шліфування сприяє утворенню дрібнодисперсної структури із зменшенням розміру блоків мозаїк (табл. 2).

Таблиця 2

Результати оцінки тонкої кристалічної структури сталі після шліфування

 

Сталь | МОТЗ | Величина

блоків, нм. | Викривлення

другого роду, Дa/a?108 | Кількість залишкового

аустеніту, %

9ХС

220-240 НВ | без полімеру | 26,67 | 3,7 | 5

з полімером | 16,40 | 1,05 | Не виявлено

Таким чином, водень, що утворюється при термомеханодеструкції полімерної компоненти МОТЗ в зоні різання може дифундувати по границям зерен і субзерен, де відбувається зменшення міцності металу в наслідку утворення твердих розчинів і гідридів (у гідрідоутворюючих металах), що сприяє руйнуванню металу в зоні різання при менших зусиллях, створює сприятливі структурно-пружні стани поверхні виробів (виникнення залишкових напруг стиску, підвищення твердості, утворення на загартованих сталях специфічних структур, поліпшення мікрогеометрії поверхні та ін.). Такий структурно-пружний стан підвищує працездатність виробів під час їх експлуатації.

У п’ятому розділі надані результати дослідження механохімічних процесів і явищ, що спостерігаються у зоні різання сталей у присутності МОТЗ.

Продукти, що утворюються при піролізу й механічної деструкції полімерної присадки до МОТЗ (поліетиленова емульсія ОКСАЛЕН-30 або полівінілхлоридна емульсія), збиралися у кварцові ампули, а відбір досліджуваних газів при механічній обробки (свердління, точіння) здійснювався за допомогою каліброваного натекателя (об’єм 1 л.) протягом 1,5 хв. Усі летючі продукти збирали при температурі рідкого азоту (-196 oC).

Відпрацьовану фракцію конденсували (час конденсації 30 хв.), переморожуючи її в малий об’єм (10 см3) з наступним заповненням ампул гелієм для проведення

хроматографічного аналізу. Газоподібна фракція, що не конденсується при температурі рідкого азоту, не аналізувалася.

Свердління сталі 10Х18Н9Т у МОТЗ проводили свердлом Р18 (d = 5 мм) при швидкості обертання свердла 1500 об/хв. На дно сталевого зразку тонким шаром наносили поліетиленову емульсію й герметично закривали кришкою, яка мала два отвори: для уведення свердла й відбору газоподібних продуктів, що утворюються при свердлінні. Аналіз газової фази проводили на газовому хроматографі СНRОМ-5.

У табл. 3 наведені результати хроматографічного аналізу газоподібних продуктів після термічного й механохімічного розкладання поліетиленової емульсії (ПЕ), які свідчать про те, що склад газових сумішей, що утворюються при піролізі й при свердлінні значно розрізнюється.

Таблиця 3

№ | Піроліз | Свердління | Час утримання

індивідуальних

речовин, сек.

ПЕ

емульсія, | МОТЗ без

полімеру | ПЕ

емульсія | МОТЗ без

полімеру

Дані представлено в умовних одиницях

1 | 17 | 16 | 16 | 17 | 17 | Метан

2 | - | 29 | 28 | - | 30 | Етилен

3 | 30 | 33 | 33 | 34 | 34 | Етан

4 | 99 | 100 | 96 | 105 | 96 | Пропилен

5 | 145 | - | - | - | 105 | Пропан

6 | 263 | 260 | 257 | 264 | - | -

7 | 400 | 400 | 400 | 410 | 400 | Ізобутан

8 | 575 | - | - | - | - | -

9 | 1260 | - | 1280 | 1200 | 1290 | Ацетон

10 | 1650 | 1620 | - | - | 1620 | Пентан

11 | 4380 | 4350 | - | - | 4350 | Гексан

12 | - | 6690 | - | - | 6630 | Гексан

У продуктах після свердління відсутні фракції 10, 11, 12, що можна пояснити їх більш активним розкладанням і поглинанням ювенільною поверхнею сталі.

Представлені результати показують, що деякі гази, що виділяються при піролізу полімерної присадки до МОТЗ демонструють трибологічну активність. Ця активність проявляється в зниженні крутного моменту, в порівнянні з свердлінням в атмосфері повітря.

Оскільки ланцюг піролітичних перетворень полімерної присадки на кінцевому


Сторінки: 1 2





Наступні 7 робіт по вашій темі:

МЕТОДИЧНІ ЗАСАДИ КОНТРОЛЮ ПІЗНАВАЛЬНОЇ ДІЯЛЬНОСТІ СТУДЕНТІВ ВИЩИХ ТЕХНІЧНИХ НАВЧАЛЬНИХ ЗАКЛАДІВ ІЗ ЗАГАЛЬНОЇ ФІЗИКИ - Автореферат - 30 Стр.
УМОВИ ТА ПАРАМЕТРИ НОРМАЛІЗАЦІЇ РОЗВИТКУ МОРСЬКИХ ТРАНСПОРТНИХ ПІДПРИЄМСТВ УКРАЇНИ - Автореферат - 30 Стр.
Індивідуалізація професійно орієнтованого навчання іноземних мов студентів немовних спеціальностей у вищих педагогічних закладах - Автореферат - 29 Стр.
ОЦІНКА ВПЛИВУ ОБ’ЄКТІВ АВТОТРАНСПОРТНОГО КОМПЛЕКСУ НА НАВКОЛИШНЄ ПРИРОДНЕ СЕРЕДОВИЩЕ В УМОВАХ ГІРСЬКОГО РЕЛЬЄФУ (на прикладі м. Сімферополь) - Автореферат - 25 Стр.
ОДНОФОТОННА ЕМІСІЙНА КОМП’ЮТЕРНА ТОМОГРАФІЯ У ДІАГНОСТИЦІ ПУХЛИН ГОЛОВНОГО МОЗКУ - Автореферат - 36 Стр.
ВИДІЛЕННЯ ТА ХАРАКТЕРИСТИКА БІЛКОВИХ ЧИННИКІВ, ЩО ЗВ’ЯЗУЮТЬ ІНСУЛІН В КРОВІ ЛЮДЕЙ, ХВОРИХ НА ЦУКРОВИЙ ДІАБЕТ - Автореферат - 31 Стр.
культура та історія кіммерійців північного причорномор’я - Автореферат - 46 Стр.