які визначаються в процесі моделювання і дозволяють оцінити поведінку системи в цілому.
Найбільш ефективним із них є аналітичний метод, тому йго можна розглянути більш детально.
Аналітичний метод моделювання полягає у визначенні формул, які з певною точністю описують роботу системи. Для визначення необхідніх нам даних про систему відбувається підстановка значень аргументу під кожен з випадків. Даний метод може застосуватись до відносно нескладних систем. Але більшість моделей,які описують реальні системи, є занадто складними і тому за допомогою цього методу можна тільки попередньо оцінити різноманітні варіанти, попередньо значно ідеалізувавши систему.
Існує декілька видів моделювання. Серед них за різними показниками можна виділити наступні:
В залежності від характеру досліджуваних процесів у системі усі види моделювання можуть бути розділені на детерміновані і стохастичні, статичні і динамічні, дискретні, безперервні і дискретно-безперервні.
Детерміноване моделювання відображає детерміновані процеси, тобто процеси, у яких передбачається відсутність усяких випадкових впливів;
Стохастичне моделювання відображає ймовірністні процеси і події. У цьому випадку аналізується ряд реалізацій випадкового процесу й оцінюються середні характеристики, тобто набір однорідних реалізацій;
Статичне моделювання служить для опису поводження об'єкта в який-небудь момент часу;
Динамічне моделювання відбиває поводження об'єкта в часі;
Дискретне моделювання служить для опису процесів, що передбачаються дискретними, відповідно безперервне моделювання дозволяє відбити безупинні процеси в системах, а дискретно- безперервне моделювання використовується для випадків, коли хочуть виділити наявність як дискретних, так і безупинних процесів.
У залежності від форми представлення об'єкта можна виділити уявне і реальне моделювання:
Уявне моделювання часто є єдиним способом моделювання об'єктів, які або практично не можливо реалізувати в заданому інтервалі часу, або які існують поза умовами, можливими для їхнього фізичного створення. Наприклад, на базі уявного моделювання можуть бути проаналізовані багато ситуацій мікросвіту, що не піддаються фізичному експерименту.
При реальному моделюванні на базі представлень людини про реальні об'єкти створюються різні наочні моделі, що відображають явища і процеси, що протікають в об'єкті, використовується можливість дослідження різних характеристик або на реальному об'єкті цілком, або на його частині. Такі дослідження можуть проводитися як в об'єктах, що працюють у нормальних режимах, так і при організації спеціальних режимів для оцінки характеристик, які цікавлять дослідника
Моделі можна розділити на:
аналогові – ґрунтується на застосуванні аналогій різних рівнів.
зображувальні можуть бути у вигляді тексту, який описує систему,блок-схем, графів,таблиць.Зображувальні моделі модуть використовуватись цу фазі попереднього аналізу або дослідження.
математичні(аналітичні) – формалізовуються у вигляді математичних виразів опису системи:
1). Оператори переходів і виходів;
2). Цільова функція;
3). Обмеження, що виконує опис параметрів стану системи;
4). Опис входів-виходів системи.
імітаційні – алгоритм опису системи у вигляді програм для ЕОМ;
діалогові – це людинно-машинна система, яка дозволяє дослідникові впроцесі моделювання, проведення експеременту, вносити певні значення в систему в режимі взаємодії з ЕОМ.
Адаптивні моделі передбачають присутність механізму адаптації(настройки), що використовується для надходження нової інформації в деякий момент керування.
В загальному випадку для побудови моделі використовують фізико-математичний аналог явищ,експеремент-ідентифікацію.
Основні етапи технології моделювання :
постановка мети моделювання;
розробка концептуальної моделі;
підготовка вихідних даних;
розробка математичної моделі;
вибір методів моделювання;
вибір засобів моделювання;
перевірка адекватності і корегування моделі;
планування експериментів з моделлю;
аналіз результатів моделювання.
Крім того можна зустріти ще і такі етапи моделювання, як розробка програмної моделі (цей етап слідує за етапом вибір засобів моделювання ); моделювання на обчислювальній системі “комп’ютері” ( він слідує після етапу планування ).
2.Системи масового обслуговування
За останній час в самих різних областях практики виникла необхідність в рішенні різних задач вірогідності, пов’язаних з роботою так званих систем масового обслуговування (СМО). Прикладами таких систем можуть служити: телефонні станції, ремонтні майстерні, квиткові каси, стоянки таксі, перукарні і т.п.
Теорія масового обслуговування спирається на теорію вірогідності і математичну статистику.
На первинний розвиток теорії масового обслуговування зробили особливий вплив роботи Датського ученого А.К. Эрланга (1878-1929).
Теорія масового обслуговування – область прикладної математики, що займається аналізом процесів в системах виробництва, обслуговування, управління, в яких однорідні події повторюються багато разів, наприклад, на підприємствах побутового обслуговування; в системах прийому, переробки і передачі інформації; автоматичних лініях виробництва і ін.
Предметом теорії масового обслуговування є встановлення залежностей між характером потоку заявок, числом каналів обслуговування, продуктивністю окремого каналу і ефективним обслуговуванням з метою знаходження якнайкращих шляхів управління цими процесами.
Задача теорії масового обслуговування – встановити залежність результуючих показників роботи системи масового обслуговування (вірогідність того, що заявка буде обслужена; математичного очікування числа обслужених заявок і т.д.) від вхідних показників (кількості каналів в системі, параметрів вхідного потоку заявок і т.д.). Результуючими показниками або характеристиками СМО, що цікавлять нас, є – показники ефективності СМО, які описують чи здатна дана система справлятися з потоком заявок.
Задачі теорії масового обслуговування носять вимізацій ний характер і зрештою включають економічний аспект за визначенням такого варіанту системи, при якому буде забезпечений мінімум сумарних витрат від очікування обслуговування, втрат часу і ресурсів на обслуговування і простоїв каналів обслуговування.
Система обслуговування вважається заданою, якщо відомі:
1) потік вимог, його характер;
2) безліч обслуговуючих приладів;
3) дисципліна обслуговування (сукупність правил, задаючих процес обслуговування).
Кожна СМО складається з якогось числа обслуговуючих одиниць, які називаються каналами обслуговування. Як канали можуть фігурувати: лінії зв’язку, різні прилади, особи, що виконують ті або інші операції і т.п
Всяка СМО призначена для обслуговування якогось потоку заявок, що поступають в якісь випадкові моменти часу. Обслуговування заявок продовжується якийсь випадковий час, після чого канал звільняється і готовий до прийому наступної заявки. Випадковий характер потоку заявок і часів обслуговування призводить до того, що в якісь періоди часу на вході СМО накопичується надмірно велике число