У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


або великий, підметом – комар або слон, присудком – дзижчить або тупотить. Побудуємо сукупність БНФ, що задають синтаксис речень.

Спочатку введемо додаткові позначення. Якщо структура представників якогось поняття задається кількома БНФ, то об'єднаємо їх, записавши альтернативні праві частини в однім правилі й відокремивши символом "|". Цей символ позначає слово "або"; він також є метасимволом.

З цими позначеннями очевидні такі БНФ:

<означення> ::= великий | злющий

<підмет> ::= комар | слон

<присудок> ::= дзижчить | тупотить

Підмет у реченні може бути як із означенням, так і без нього. Введемо поняття <група підмета> і БНФ

<група підмета> ::= <означення> <підмет> | <підмет>

Тоді структура речення задається такою БНФ:

<речення> ::= <група підмета> <присудок>

Серед понять мови виділяється головне; воно позначається спеціальним початковим нетерміналом. Очевидно, що в нашій мові, наприклад, головним поняттям є речення, а в мові Паскаль – програма.

Означимо тепер такі поняття, як послідовність терміналів, вивідна з початкового нетермінала, і формальна мова, задана сукупністю БНФ.

Якщо замінити початковий нетермінал (позначимо його S) на праву частину правила, у якому S ліворуч, то одержимо послідовність символів (терміналів і нетерміналів), що називається вивідною з S. У прикладі 10.1 такою є

<група підмета> <присудок>

Якщо у вивідної з S послідовності замінити якийсь нетермінал на відповідну йому праву частину, то одержимо послідовність, що теж називається вивідною з S, тощо. Наприклад,

<означення> <підмет><присудок>,

<означення> <підмет> тупотить,

злющий <підмет> тупотить,

злющий комар тупотить

(тут кожна послідовність символів утворювалася з попередньої заміною одного з нетерміналів на праву частину правила).

Вивідні з S послідовності, що складаються лише з терміналів, називаються вивідними виразами. Саме вони є представниками головного поняття мови. Наприклад, послідовність злющий комар тупотить є вивідним виразом і представником головного поняття – речення.

Нарешті, формальна мова, задана сукупністю БНФ – це множина вивідних виразів.

У прикладі 10.1 формальна мова утворена всіма можливими реченнями. Зауважимо, що всього їх 12: 8 із означеннями і 4 без них.

Крім поняття виводимості з початкового нетермінала, використовується також поняття виводимості з довільної послідовності терміналів і нетерміналів незалежно від того, чи виводиться сама ця послідовність із S, чи ні. Так, із <присудок> у прикладі 10.1 виводяться дзижчить і тупотить, незважаючи на те, що сам по собі <присудок> із початкового нетермінала не виводиться.

Будемо вважати також, що будь-яка з альтернатив метавиразу виводиться з нього. Наприклад, із метавиразу

<група підмета> ::= <означення> <підмет> | <підмет>

виводяться і <означення> <підмет>, і <підмет>.

Приклад 2. Розглянемо оператори присвоювання змінним, іменами яких можуть бути лише x, y, z, а вирази у правій частині можуть бути або сталими 1 і 2, або іменами x, y, z, або сумою чи різницею цих сталих і змінних. Головним тут, очевидно, є поняття <оператор присвоювання>:

<оператор присвоювання> ::= <ім'я> ':=' <вираз>

Вираз складається зі сталих і імен. Узагальнимо їх поняттям <первинне>, і запишемо БНФ виразів і первинних:

<вираз> ::= <первинне> | <первинне> '+' <первинне> |

<первинне> '-' <первинне>

<первинне> ::= <стала> | <ім'я>

БНФ сталих і імен очевидні:

<стала> ::= '1' | '2'

<ім'я> ::= 'x' | 'y' | 'z'

Записана сукупність БНФ задає синтаксис операторів присвоювання, а також виразів, сталих і імен. Крім того, задано множини конкретних імен, сталих, виразів і операторів присвоювання.

Підіб'ємо підсумок. БНФ – це вираз у алфавіті, що складається з терміналів, нетерміналів і спеціальних метасимволів. БНФ мають цілком визначений синтаксис (нетермінал, потім знак '::=' і метавираз). Їхньою семантикою є задання структури і множин представників понять, позначених нетерміналами. Таким чином, ми маємо мову БНФ. Вона призначена для описання інших мов і називається метамовою.

Існують різні метамови; деякі з них задаються строго й точно засобами логіки і математики і тому називаються формальними. Мова БНФ, описана тут неформально, насправді є окремим випадком формальної метамови – мови формальних граматик.

Мова БНФ була створена спеціально для описання синтаксису виразів мов програмування. З цією метою її використовуємо й ми.

3. Розширені БНФ

Доповнимо мову БНФ кількома зручними конструкціями. Тут нам знадобиться ще одне поняття – еквівалентність БНФ. Дві сукупності БНФ називаються еквівалентними, якщо задають ту саму формальну мову.

Для запису еквівалентних БНФ у більш короткому і наочному вигляді алфавіт метасимволів розширюється символами "(", ")", "[", "]", "{", "}". Метавирази з такими символами називаються розширеними, а БНФ – розширеними БНФ, або скорочено РБНФ. Розглянемо побудову РБНФ.

Нехай букви X, Y, Z, … , T позначають довільні метавирази (можливо, порожні), N – нетермінал.

Заміною кількох правил вигляду

N ::= X Z Y

N ::= X T Y

у деякій сукупності БНФ на правило вигляду

N ::= X ( Z | … | T ) Y

утворюється сукупність БНФ, еквівалентна початковій. Метасимволи "(" та ")" тут просто відокремлюють частину метавиразу з альтернативами Z, … , T від інших частин. Наприклад, правила

<вираз> ::= <первинне> '+' <первинне> |

<первинне> '-' <первинне>

можна замінити на правило

<вираз> ::= <первинне> ('+' | '-') <первинне>

Заміною двох правил вигляду

N ::= X Z Y

N ::= X Y

на правило N ::= X [ Z ] Y також утворюється еквівалентна БНФ. Наприклад, замість правил

<вираз> ::= <первинне> | <первинне> ('+'| '-') <первинне>

можна вжити правило

<вираз> ::= <первинне> [ ('+'| '-') <первинне> ]

або замість правил

<оператори-розгалуження> ::=

if <умова> then <оператор> else <оператор> |

if <умова> then <оператор>–

правило

<оператори-розгалуження> ::=

if <умова> then <оператор> [ else <оператор> ]

Іноді буває зручно позбутися якогось поняття, замінивши його нетермінал відповідним метавиразом, наприклад, замість нетермінала <первинне> з прикладу 10.2 записати метавиразом <стала> | <ім'я> або навіть '1' | '2' | 'x' | 'y'


Сторінки: 1 2 3