розрядність каналу даних у цієї шини зараз складає 32 біт, не рідкість ада-п-тери і з 64-бітною шиною. Проте реально розрядність, що використовується, може виявитися меншою, якщо встановлені не всі передбачені мікросхеми відеопам'яті.
Блок зовнішнього інтерфейсу пов'язує адаптер з однією з шин комп'ютера. Якщо раніше для графічних адаптерів використовували шину ISA (8 або 16 біт), то сучасні графічні адаптери використовують в основному високопродуктивні шини. Локальна шина VLB досить швидко зійшла з сцени разом з процесорами класу 486. В даний час для цих цілей використовується канал AGP.
Блок інтерфейсу монітора формує вихідні сигнали відповідного типу (RGB-TTL, RGB-Analog, композитне відео або S-Video). Цей же блок відповідає і за діалог з монітором: в найпростішому випадку – читання біт ідентифікації (для VGA-моніторів), а в складнішому – обмін даними по каналу DDC. Ідентифікація типу підключеного монітора VGA може проводитися і по рівню відеосигналу на виходах червоного або синього кольору: монітор має термінатори (75 Ом) на кожному з аналогових входів. Таке навантаження при підключенні знижує напругу вихідного сигналу. В монохромного монітора використовується тільки канал зеленого кольору – лінії червоного і синього залишаються без навантаження. Цей факт і може зафіксувати інтерфейсний блок і повідомити систему про виявлення монохромного монітора. Правда, буває і конфуз: якщо в кольорового монітора відключити термінатори (деякі великі монітори дозволяють це зробити), то його приймуть за монохромний.
Модуль розширення BIOS (Video BIOS) зберігає код драйверів відеосервісу (INT10h) і таблиці знакогенераторів. Цей модуль з'явився з адаптерами EGA і VGA і забезпечує можливість установки будь-якої карти, не замислюючись про проблеми програмної сумісності. Модуль розширення отримує управління для ініціалізації графічного адаптера майже на самому початку POST (до тестування основної пам'яті), і його заставка з'являється на екрані до заставки системної BIOS. Модуль має початкову адресу C0000h, його розмір залежить від моделі адаптера: кінцева адреса EGA BIOS – C3FFFh, VGA BIOS – C7FFFh. Оскільки для розширення BIOS застосовують 8-розрядні мікросхеми ПЗП, час доступу до яких суттєво перевищує час доступу мікросхем ОЗП, для підвищення продуктивності відеопобудов застосовують тіньову пам'ять (Video BIOS Shadowing) або кешування (Video BIOS Caching). Драйвери для адаптерів MDA і CGA вбудовані в системну BIOS. Природно, що для графічних адаптерів, інтегрованих в системну плату, програмна підтримка також вбудована в системну BIOS.
Відеокомпоненти поки що не стали обов'язковими обладнаннями дисплейного адаптера. Вони можуть включати апаратну підтримку різних кодеків (частіше всього – MPEG-плейєр), засоби підтримки відеооверлеїв, фрейм-граббер, TV-тюнер.
Перші графічні адаптери будувалися на базі контроллера ЕПТ (6845), обрамованого масою мікросхем середнього ступеня інтеграції. В сучасних дисплейних адаптерах застосовуються набори спеціалізованих інтегральних схем високого ступеня інтеграції – графічні і відеочіпсети. Ці мікросхеми разом з вживаними мікросхемами відеопам'яті визначають основні характеристики адаптерів.
В якості відеопам'яті дисплейних адаптерів звичайно застосовується динамічна пам'ять, що зумовлено необхідним об'ємом (до декілька мегабайт) і обмеженнями на ціну, швидкодію й енергоспоживання. Специфіка використання пам'яті в даному вузлі зумовлена необхідністю регулярного послідовного зчитування її даних в RAMDAC (або на елементи вихідної логіки адаптерів MDA, CGA, EGA). Період зчитування, відповідний частоті кадрової розгортки монітора, звичайно дозволяє не застосовувати спеціальних схем регенерації пам'яті. Проте постійна зайнятість відеопам'яті регенерацією зображення суттєво гальмує процес обміну даними з центральним процесором або графічним акселератором. Паузи у видачі даних в процесі регенерації чреваті "снігом" на екрані, очікування зворотного ходу променя (коли відеопам'ять "відпочиває" від регенерації) для обміну даними сильно знижують продуктивність графічної системи і, отже, комп'ютера в цілому.
В найпростіших моделях графічних адаптерів застосовується стандартна динамічна пам'ять, велику продуктивність мають графічні адаптери з EDO DRAM.
SGRAM (Synchronous Graphic RAM) – синхронна динамічна пам'ять для графічних адаптерів – здатна працювати без тактів очікування на робочій частоті 125 Мгц і вище. По суті, ця пам'ять є спеціальною версією SDRAM, орієнтованою на виконання блокових операцій. Так само як і в SDRAM, SGRAM дозволяє програмувати кількість елементів пакетного циклу (1, 2, 4, 8 або до кінця сторінки), причому цикл може бути по команді перерваний у будь-який момент. Можливе програмування затримки появи даних (Programmable CAS latency) для узгодження тимчасової діаграми. Спеціально для графічних використань (заповнення екранного буфера даними, що повторюються) введений 32-бітний регістр кольору (Color Register) і блоковий запис (8-column Block Write), при якому за один цикл дані з цього регістра записуються у вісім суміжних осередків. Регістр маски (Mask Register) в парі з побітною маскою запису WPB (Write-реr-Bit), передаваного через інформаційні входи, дозволяє захистити від запису задані біти. Ці засоби дозволяють прискорювати такі операції, як заповнення великих областей (наприклад, полігонів) певним кольором.
Продуктивність відеопам'яті можна підвищувати і ускладненням архітектури, добиваючись розпаралелювання процесів звертання для регенерації і побудови зображення.
VRAM (Video RAM) – двохпортова пам'ять для відеоадаптерів, заснована на комірках DRAM. На додаток до інтерфейсу звичайної динамічної пам'яті VRAM має додатковий порт для послідовного зчитування даних, який використовується схемою регенерації зображення. Цей порт реалізується на регістрах SAM (Serial Access Memory) і після ініціації чергового циклу забезпечує незалежне виведення, що синхронізується спеціальним тактовим сигналом. Інший порт, що має інтерфейс звичайного DRAM, використовується для доступу з боку процесора і графічного контроллера, що забезпечує побудову зображень. VRAM має 32-бітний регістр кольору (Color Register), забезпечує блоковий запис (8-column Block Write) і побітне маскування через регістр маски (Mask Register) в парі з побітною маскою запису WPB (Write-реr-Bit). Крім