DNS (Domain Name Service) одержує і надає інформацію про хости мережі. Під доменом розуміється безліч машин, що адмініструються і підтримуються як одне ціле. Можна сказати, що всі машини локальної мережі складають домен у більшій мережі, хоча можна і розділити машини локальної мережі на трохи доменів. При підключенні до Internet домен повинний бути пойменований відповідно до угоди про імена Internet. Internet організований як ієрархія доменів. Кожен рівень ієрархії є галуззю рівня root. На кожнім рівні Internet знаходиться сервер імен - машина, що містить інформацію про машини нижчого рівня і відповідність їхніх імен ІР-адресам.
Домен кореневого рівня формується NIC. Домени верхнього рівня мають наступні галузі: gоv (будь-які урядові заклади), edu (освітні установи), агра (АRPANET), соm (комерційні підприємства), mil (військові організації), org (інші організації, що не попадають у попередні). Починаючи з весни 1997 ІАНС додав ще 7 доменів: firm (фірми і напрямки їх діяльності), store (торгові фірми), web (об'єкти, зв'язані з WWW), аrts (об'єкти, зв'язані з культурою і мистецтвом), rес (розваги і відпочинок), іnfo (інформаційні послуги) і попі (інші). Ці імена відповідають типам мереж, що складають дані домени.
Члени організацій на другому рівні керують своїми серверами імен. Домени локального рівня адмініструються організаціями. Локальні домени можуть складатися з одного хосту чи включати не тільки безліч хостів, але і свої піддомени.
Кожен вузол дерева є домен, що обран як мітка.
Ім'я домену утвориться конкатенацією ("склеюванням" ) усіх міток доменів від кореневого до поточного, перерахованих праворуч ліворуч і розділених точками. Наприклад, в імені kernel.generic.edu: - відповідає верхньому рівню, generic - показує поддомен edu, kernel - є ім'ям хоста.
Число рівнів доменів не обмежено. Імена доменів є іншим засобом досягнення цільового хосту. У INTERNET можна зустріти імена типу netcom.com чи spry.com. Ці імена є іменами доменів, і вони зареєстровані подібним же чином.
1.5 Мережа з оптоволоконною лінією зв'язку
Новим технологiчним напрямком розвитку мереж Ethernet є оптоволоконна мережа Ethernet 10BASE-F зi швидкiстю передачi 10 Мбiт/с. В якостi середовища передачi використовується 50- та 100-мiкронний оптоволоконний кабель. Мережа характеризується зiркоподiбною топологiєю, яка пiдтримується за допомогою оптоволоконних концентраторiв. Максимальна довжина одного променя (сегмента) складає 2100 метрiв.
1.5.1 Принцип дії мережі з оптоволоконною передачею даних
Мережа FDDI являє собою волоконно-оптичне маркерне кільце зі швидкістю передачі даних 100 Мбіт/сек. Стандарт FDDI був розроблений комітетом ХЗii5 Американського національного інституту стандартизації (АNSI). Мережі FDDI підтримуються усіма ведучими виробниками мережного устаткування. В даний час комітет АNSIІ ХЗТ9.5 перейменований у ХЗТ12.
Використання як середовища поширення волоконної оптики дозволяє істотно розширити смугу пропуску кабелю і збільшити відстані між мережними пристроями.
Порівняємо пропускну здатність мереж – FDDI I Ethernet при багато користувацькому доступі. Припустимий рівень утилізації мережі Еthernet лежить у межах 35% (3.5 Мбіт/сек) від максимальної пропускної здатності (10 Мбіт/сек), у противному випадку імовірність виникнення колізій стає не занадто високою і пропускна здатність кабелю різко знизиться. Для мереж FDDI припустима утилізація може досягати 90-95% (90-95 Мбіт/сек). Таким чином, пропускна здатність FDDI приблизно в 25 разів вище.
Детермінірована природа протоколу FDDI (можливість прогнозування максимальної затримки при передачі пакета по мережі і можливість забезпечити гарантовану смугу пропущення для кожної зі станцій) робить його ідеальним для використання в мережних АСУ в реальному часі й у додатках, критичних вчасно передачі інформації (наприклад, для передачі відео і звукової інформації). Багато що зі своїх ключових властивостей FDDI успадкувала від мережі Token Ring (стандарт ІЕЕЕ 802.5). Насамперед - це кільцева топологія і маркерний метод доступу до середовища. Маркер - спеціальний сигнал, що обертається по кільцю. Станція, що одержала маркер, може передавати свої дані. Однак FDDI має і ряд принципових відмінностей від Token Ring, що робить її більш швидкісним протоколом. Наприклад, змінений алгоритм модуляції даних на фізичному рівні. Token Ring використовує схему манчестерського кодування, що вимагає подвоєння смуги переданого сигналу щодо переданих даних. У FDDI реалізований алгоритм кодування "п'ять з чотирьох" - 4В/5В, що забезпечує передачу чотирьох інформаційних біт п'ятьма переданими бітами. При передачі 100 Мбіт інформації в секунду фізично в мережу транслюється 125 Мбіт/сек, замість 200 Мбіт/сек, що треба було б при використанні манчестерського кодування.
Оптимізовано і керування доступу до середовища Medium Access Control - VAC). У Token Ring воно засновано на побітовій основі, а в FDDI на рівнобіжній обробці групи з чотирьох чи восьми переданих бітів. Це знижує вимоги до швидкодії устаткування.
Фізично кільце FDDI утворене волоконно - оптичним кабелем із двома світлопроводящими волокнами. Одне з них утворить первинне кільце (primary ring), є основним і використовується для циркуляції маркерів даних. Друге волокно утворить вторинне кільце (secondary ring), є резервним і в нормальному режимі не використовується. Станції, підключені до мережі FDDI, підрозділяються до двох категорій.
Станції класу А мають фізичні підключення до первинного і вторинного кілець (Dual Attached Station - дворазово підключена станція);
Станції класу В мають підключення тільки до первинного кільця (Single Attached Station - однократно підключена станція) і підключається тільки через спеціальні пристрої, називані концентраторами.
Порти мережних пристроїв, що підключаються до мережі FDDIІ, класифікуються на 4 категорії: А порти, S порти, М порти і S порти. Портом А називається порт, що приймає дані з первинного кільця і передавальний їх у вторинне кільце. Порт S - це порт, що приймає дані з вторинного кільця і передавальний їх у первинне кільце. М (Мaster)