дешифратора, номер якого відповідає еквіваленту вхідного коду, буде також низький рівень. Для нижнього (за схемою) дешифратора необхідно виконання умов: А3=1 і А4=0.
Дешифратор на мікросхемі К555ИДЗ має чотири входи для прийому чисел в коді 8421 і 16 виходів. Два входи стробування (для передачі сигналу на А1 і А2 необхідно подати низькі рівні) дозволяють об'єднати мікросхеми для одержання дешифраторів на 32 виходи (рисунок 24), 64 виходи (потрібно чотири мікросхеми).
Рисунок 24 - Дешифратор на 32 виходи
Перетворювач двійково-десяткового коду в код семисег-ментного індикатора. Числа на табло і пультах висвічуються, як правило, в десятковому коді. Для цього можна використати дешифратор на мікросхемі К555ИД1 разом з газорозрядним індикатором. Однак застосування таких індикаторів в практиці небажано через необхідність використання джерела живлення високої напруги (?200 В). Зараз широке розповсюдження отримали так звані семисегментні світлодіодні і рідиннокристалічні індикатори, що працюють при тих же напругах, що і мікросхеми. В них індикація здійснюється за допомогою семи елементів (рисунок 25). Подаючи керуючу напругу на окремі елементи індикатора і викликаючи його світіння (світлодіодні індикатори) або змінюючи його забарвлення (рідиннокристалічні індикатори), можна отримати зображення десяткових цифр 0, 1, ..., 9. Деякі мікросхеми - перетворювачі коду 8421 в семисегментний показані на рисунок 26.
Рисунок 25 - Стилізоване зображення цифр в семисегментних індикаторах
Рисунок 26 - Перетворювачі двійково-десяткового коду в семисегментний
На мікросхеми серії К514 подають вхідні сигнали рівня ТТЛ. Сигнал С служить для гасіння індикації (напругою низького рівня). При нормальній роботі рівень сигналу С=1. Дешифратор на мікросхемі К514ИД1 працює зі світлодіодними індикаторами, які мають роздільні аноди, а на К514ИД2 - з роздільними катодами. Дешифратор К514ИД2 під’єднують до індикаторів через струмообмежувальні резистори (200 - 500 Ом), а перший має такі резистори у своєму корпусі.
Мікросхеми К176ИД2 і К176ИДЗ є перетворювачами коду з вхідним регістром пам'яті. Запис інформації в пам'ять відбувається по фронту тактового сигналу, що подається на вхід S (при цьому сигнал на вході К=0). Якщо сигнал К=1, дешифратор блокується. Вихідний код цих дешифраторів - прямий при М=0 і зворотний при М=1. Дешифратори призначені для роботи з рідиннокристалічними і люмінесцентними індикаторами. Вони можуть працювати і зі світлодіодними індикаторами при напрузі джерела живлення 9-12 В з зниженою яскравістю світіння (через обмеження струму до 2-3 мА).
В практциці проектування різних цифрових систем часто виникає ситуація, при якій на один вихід якого-небудь пристрою треба подавати сигнали від різних джерел інформації. Таку задачу виконують пристрої, які називаються мультиплексорами.
Мультиплексором називають пристрій, який здійснює підключення (комутацію) одного з N входів даних до одного виходу.
Умовне позначення мультиплексора з чотирма інформаційними входами і його принципова схема показані на рисунку 27. На вихід Q такого приладу передається логічний рівень того інформаційного входу Di, номер якого i в двійковому коді заданий на адресних входах Аl, А2. Із принципової схеми випливає, що
.
Число інформаційних входів може бути збільшене, але при цьому доведеться збільшити і розрядність адреси.
В інтегральному виконанні випускаються мультиплексори на два входи (чотири елемента в одному корпусі), на чотири входи (два в одному корпусі), на вісім і шістнадцять входів (деякі з них показані на рисунку 28). Всі вони мають вхід дозволу вибірки V (напругою низького рівня). Мікросхема К561ЛС2 містить чотири елементи, кожний з яких реалізує функцію . Для перетворення в двоканальний комутатор її доповнюють інвертором.
Мультиплексор в різних літературних джерелах має і інші назви: електронний комутатор, селектор. Схему мультиплексора називають селектором (від select вибирати).
Рисунок 27 - Умовне позначення і принципова схема мультиплексора з чотирма інформаційними входами
Рисунок 28 - Умовні графічні позначення мультиплексорів
6 СУМАТОРИ
Суматор призначений для арифметичного додавання двох чисел. З принципу додавання багаторозрядних двійкових чисел випливає, що в кожному i-му розряді знаходиться сума трьох чисел за модулем два (доданки Ai, Bi і число перенесення, що надійшло з молодшого розряду Pi) і формується сигнал переносу в старший розряд Pi+1.
Для прикладу проаналізуємо таблицю істинності однорозрядного суматора (таблиця 4) і запишемо логічні вирази для вихідних величин
За цими функціями можна побудувати суматор на елементах і і АБО (рисунок 29). Умовне зображення однорозрядного суматора наведено на рисунку 30. Для додавання двох багаторозрядних двійкових чисел використовують багаторозрядні суматори, які є найпростішим видом послідовного з‘єднання однорозрядних суматорів (рисунок 31).
Таблиця 4 - Таблиця істинності однорозрядного суматора
Вхід | Вихід
Доданки | Перенесення | Сума | Перенесення
А | В | Рі | S | Pi+1
0
0
1
1
0
0
1
1 | 0
1
0
1
0
1
0
1 | 0
0
0
0
1
1
1
1 | 0
1
1
0
1
0
0
1 | 0
0
0
1
0
1
1
1
Рисунок 29 - Принципова схема однорозрядного суматора
Рисунок 30 - Умовне зображення однорозрядного суматора
Рисунок 31 - Схема багаторозрядного суматора
В схемах мікросхем є одно-, дво- та чотирирозрядні суматори, які можна об'єднати для одержання суматорів з будь-якою розрядністю. В серію К555, наприклад, входять три суматори: однорозрядний К555ИМ1, дворозрядний К555ИМ2 та чотирирозрядний К555ИМ3 (рис. 32).
Рисунок 32 - Приклади суматорів
ПРАКТИЧНА ЧАСТИНА
Завдання
57. Логічні елементи, що застосовуються в електронно-обчислювальній техніці. Написати програму, яка моделювала б роботу мультиплексора.
1 Обґрунтування розв’язку завдання
Мультиплексор передає сигнал з одного із інформаційних входів Di на єдиний вихід Q, причому номер цього входу рівний десятковому еквіваленту двійкового числа на адресних входах Ai. Вхід Е – вхід дозволу на роботу мультиплексора. Нижче наведемо таблицю істинності для мультиплексора з двома адресними входами.
A0 | A1 | E | Q
* | * | 0 | 0
0 | 0 | 1 | D0
0 | 1 | 1 | D1
1 |