У нас: 141825 рефератів
Щойно додані Реферати
Тор 100
|
|
РЕФЕРАТ На тему: Поняття та логіка предикатів 1.Поняття предиката Числення висловлень, що розглядалось у попереднiх роздiлах, як алгебра висловлень i як формальна (аксiоматична) теорія, є важливою i невiд’ємною складовою частиною всiх числень математичної логiки. Однак воно є занадто бiдним для опису та аналiзу найпростiших логiчних мiркувань науки i практики. Однiєю з причин цього є те, що у численнi висловлень будь-яке просте висловлення розглядається як вихiдний об’єкт дослiдження, неподiльне цiле, позбавлене частин i внутрiшньої структури, яке має лише одну властивiсть - бути або iстинним, або хибним. Для того, щоб побудувати систему правил, яка дозволяла б проводити логiчнi мiркування для виведення нетривiальних правильних висновкiв з урахуванням будови i змiсту простих висловлень, пропонується формальна теорiя, що дiстала назву числення предикатiв. Теорiя предикатiв починається з аналізу граматичної будови простих висловлень i ґрунтується на такому висновку: простi висловлення виражають той факт, що деякi об’єкти (або окремий об’єкт) мають певнi властивостi, або що цi об’єкти знаходяться мiж собою у певному вiдношеннi. Наприклад, в iстинному висловленнi «3 є просте число» пiдмет «3» - це об’єкт, а присудок «є просте число» виражає деяку його властивiсть. У латинськiй граматицi присудок називається предикатом, звiдси цей термiн i увiйшов у математичну логiку. Головним для логiки предикатiв є саме друга складова речення-висловлення - присудок-властивiсть. Вона фiксується, а значення об’єкта пропонується змiнювати так, щоб кожен раз отримувати осмисленi речення, тобто висловлення. Наприклад, замiнюючи у наведеному вище висловленнi 3 на 1, 5, 9 або 12, матимемо вiдповiдно такi висловлення: «1 є просте число», «5 є просте число», «9 є просте число», «12 є просте число», з яких друге є iстинним, а решта - хибними висловленнями. Таким чином, можна розглянути вираз «x є просте число», який не є висловленням, а є так званою пропозицiйною (висловлювальною) формою. Тобто формою (або формуляром), пiсля пiдстановки в яку замiсть параметра (змiнної) x об’єктiв (значень) з певної множини M, дiстаємо висловлення. Аналогiчно можна трактувати, наприклад, пропозицiйнi форми «a є українцем», «b i c є однокурсники», «c важче d», або «точка x лежить мiж точками y i z». У першi двi з них можна пiдставляти замiсть параметрiв a, b i c прiзвища конкретних людей. У третю замiсть c i d назви будь-яких об’єктiв (предметiв), якi мають вагу. Для четвертої множиною M значень змiнних x, y i z є множина точок певної прямої. Перша з цих пропозицiйних форм задає, як i в наведенiй ранiше формi, певну властивiсть для об’єкта a. Iншi три форми описують деякi вiдношення мiж вiдповiдними об’єктами. Розглянувши конкретнi приклади i коротко зупинившись на мотивацiї та змiстовнiй iнтерпретацiї подальших понять, перейдемо до формальних математичних означень. n-мiсним предикатом P(x1,x2,...,xn) на множинi M називається довiльна функцiя типу MnB, де |