У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


Реферат на тему:

Пошукова робота

на тему:

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди).

План

Поверхні обертання.

Циліндричні поверхні.

Конічні поверхні.

Еліпсоїд.

Однопорожнинний і двопорожнинний гіперболоїди.

Еліптичний та гіперболічний параболоїди.

3.7. Поверхні другого порядку           

Розглянемо алгебраїчні поверхні другого порядку. Загальне рівняння такої поверхні має вигляд:                                         

.44)

Опишемо важливі поверхні другого порядку. Скласти собі загальне представлення про більшість поверхонь другого порядку можна, розглянувши поверхні обертання ліній другого порядку навколо їх осей симетрії.

3.7.1. Поверхні обертання

Поверхня , утворена від обертання деякої плоскої лінії , що лежить в площині  яка проходить через пряму , навколо цієї прямої, називається поверхнею обертання. Пряма називається віссю обертання. Кожна точка лінії при цьому опише коло (рис.3.25).

Виберемо прямокутну (не обов’язково прямокутну) декартову систему

координат  причому вісь направимо вздовж а вісь помістимо в площині Нехай лінія від обертання якої одержана поверхня, має в цій системі координат рівняння  

Розглянемо точку Через неї проходить коло, яке має центр на осі  і лежить в площині, що 

перпендикулярна цій осі.                          Рис.3.25

Радіус кола дорівнює віддалі від до осі, тобто  Точка лежить на поверхні обертання тоді і тільки тоді, коли на даному колі буде точка  що належить

лінії            

Точка  лежить в площині , тому  Крім того,  і  оскільки точка  лежить на колі, що проходить через  Координати точки задовольняють рівнянню лінії Підставляючи в це рівняння і , ми отримаємо необхідну і достатню умову того, що точка лежить на поверхні                                             

.45)

Рівняння (3.45) є рівнянням поверхні обертання лінії навколо осі

3.7.2. Конічні поверхні           

Розглянемо на площині пару прямих, що перетинаються і які мають в системі координат  рівняння  Поверхня обертання цієї лінії навколо осі згідно формули (3.49) має рівняння

і носить назву прямого кругового конуса (рис.3.26).

Стиск (або розтяг ) по осі  переводить прямий круговий конус в поверхню з рівнянням                          

.46)

яка називається конусом другого порядку. Конус складається із прямих, що проходять      через початок координат. Переріз конуса   

Рис.3.26    площинами , що перпендикулярні осі представляють собою еліпси          

3.7.3. Еліпсоїд           

Розглянемо поверхню, утворену від обертання еліпса  навколо осі Така поверхня називається еліпсоїдом обертання, рівняння якої Якщо кожну точку на

еліпсоїді обертання зсунемо до площини то всі точки еліпсоїда переходять в точки поверхні, що називається еліпсоїдом (рис.3.27). Рівняння еліпсоїда має вигляд                                                          Рис.3.27      

(3.47)

Еліпсоїд представляє собою   замкнуту поверхню з центром симетрії в початку координат. Еліпсоїд отримується із еліпсоїда обертання стиском так само, як і еліпс отримується стиском кола. Очевидно, коли всі півосі рівні, із (3.47) ми одержимо рівняння сфери

3.7.4. Однопорожнинний і двопорожнинний гіперболоїди           

При обертанні гіперболи  навколо осі (яка її не перетинає) одержимо поверхню, яка називається однопорожнинним гіперболоїдом обертання           

В результаті стиску цієї поверхні по осі  ми отримаємо поверхню, що називається однопорожнинним гіперболоїдом (рис.3.28). рівняння цієї поверхні має вигляд                                                                                                    

.48)           

Через кожну точку однопорожнинного гіперболоїда (3.48) проходять дві прямі (прямолінійні твірні)           

Дійсно,


Сторінки: 1 2