У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


Моделі квазістацінарних об’єктів

Моделі квазістацінарних об’єктів.

Для того, щоб визначити систему характеристики квазістацінарних об’єктів необхідно зверху до класифікаційної теорії виташкових процесів, Т.В.Г:

-аналоговіц

-аналого-дискрненні

-дискретні

Аналоговий,

 

Х1(t) 0 : 5 mP

ОУ .... 5 : 20 mP

Xm (t) 0 : 1 B

0 : 10 B

1. X(t) Ix = ?

t

2.Аналого-дискретні В. П.

АГ- адресні генератори АК-аналоговий комутатор.

Х1(t)

Xj(t)

ОУ Xm(t)

Xj(t) I x ?

t

t

3. Дисркетні В.П.

Х1і

ОУ

Xmi

Ix = E^ [log2 A];

Випадкові процеси є центровані і нецентровані:

Центрованіи Мх = 0

Нецентровані Мх = 0

В телекомунікаційних системах всі сигнали центровані і тільки в оптичних системах нецентровані.

Нестаціонарні

Квазістаціонарні

Стаціонарні

Dx

Mx Mx, Dx, Rxx, S (щ) = Vav

Нестаціонатні В.П. винвкають при авоєнні технології виробництва, а також при розвитку аварій.

2. Квазістаціонарні процеси виникли коли окремі характерні незмінні, а окремі скачками міняють значення.

В кожному квазістаціонарному стані контролюються різні ансамблі

Для квазістаціонарного об’єкта вводиться класифікація станів

Символи

Простій _________________________

Підготовка ______________________

Запуск __________________________

Режим __________________________

Робота __________________________

Очікування ______________________

Аварія _________________________ *

Реконструкція __________________

Модернізація _______________________________________

...

Кожний стан квазістаціонарних об’єктів описується чотирьма характеристиками:

Мх, Dx, Rxx, S(щ). Крім цього описується розподілами.

Статестичний розподіл враховують у різних випадків, оскільки сума різних впливів зводиться до Гаусівського процесу.

Система інформаційних моделей ПОКМ для квазістаціонарних процесів

N0 - станів на протязі місяця

Nі – число і-тих станів управління

- ймовірність перебування в іншому стані

0??1

бij – регламентна ймовірність

? бij

Методи переведення не стаціонарних об’єктів до стаціонарних.

Mx,Dx,Rxx,S(w)=var

1.Mj – вичислюють ковзне математичне сподівання.

2.Х=Хі-Мj

3.Визначаємо ковзну дисперсію

4.

В результаті отримуємо центроване і нормоване значення.