Деякі з основних методів розв’язування задач НЛП.
Метод Франка –Вулфа . Нехай потрібно найти максимальне значення вогнутой функції
(57)
при умовах : (58)
(59)
Характерною особливістю цієї задачі являється то , що її система обмеження вміщує тільки лінійні нерівності . Ця особливість являє основний для заміни в межах досліджуваної точки нелінійної цільової функції лінійною , завдяки чому розв’язок даної задачі зводиться до послідовного розв’язку задач лінійного програмування.
Процес найдення розв’язку задачі начинають з оприділення точки , принадлежавшої області допустимих розв’язків задачі.
Нехай ця точка , тоді в цій точці вираховують градієнт функції (57)
і будують лінійну функцію
(60)
Потім знаходять максимальне значення цієї функції при обмеженнях (58) і (59). Нехай рішення даної задачі визначається точкою . Тоді за новий допустимий розв’язок даної задачі приймають координати точки
(61)
де -- деяке число , називають кроком вирахуваним і закінченням між нулем і одиницею . Це число беруть довільно чи визначають таким способом , щоб значення функції в точці
залежавши від , було максимальним . Для цього необхідно найти рішення рівності і вибрати його найменший корінь . Якщо його значення більше одиниці , то слідує покласти . Після визначення числа находять координати точки вираховують значення цільової функції в ній і виясняють необхідність переходу до нової точки . Якщо така необхідність має , то вираховують в точці градієнт цільової функції , переходять до даної задачі лінійного програмування і находять її розв’язок . Визначають координати точки і досліджують необхідність проведення подальших обчислень . Після кінцевого числа отримують з необхідною точністю розв’язок даної задачі .
Отже, процес находження розв’язків задачі (57) – (59) методом Франка – Вулфа включає наступні етапи :
Визначають даний допустимий розв’язок задачі .
Находять градієнт функції (57) в точці допустимого розв’язку .
Будують функцію (60) і находять її максимальне значення при умовах (58) і (59) .
Визначають крок обчислень .
По формулам (61) находять компоненти нового допустимого розв’язку .
Провіряють необхідність переходу до наступного допустимого розв’язку . У випадку необхідності переходять до етапу 2 , в поганому випадку найдене прийняте розв’язок даної задачі .
3.27. Методом Франка – Вулфа найти розв’язок задачі 3.22. , забезпеченої в певному максимальному значенні функції
(62)
при умовах
(63) (64)
Розв’язок . Найдем градієнт функції
і в якості даного допустимого розв’язку задачі візьмемо точку а в якості критерія оцінки якості одержимо розв’язок – нерівності де .
1. Ітерація . В точці градієнт .Знаходимо максимальне значення функції
(65)
при умовах (63) і (64)
(66)
(67)
Задача (65)—(67) має оптимальний план .
Найдемо новий допустимий розв’язок даної задачі по формулі (61):
, де . (68)
Підставимо замість і їх значення , отримаємо
(69)
Знайдемо тепер число . Підкладемо в рівність (62) замість і
із значення у відповідності з відношенням (69)
,
знайдемо подібну цій функції по і прирівняємо її нулю :
.Розв’язуючи цю рівність , отримаємо .
Оскільки найдене значення заключне між 0 і 1 , приймаючи його за величину кроку .Таким образом ,
.
Ітерація . Градієнт цільової функції даної задачі в точці є . Находимо максимальне значення функції при умовах (63) і (64) . Рішення являється .
Оприділяєм тепер .Останню рівність перепишемо наступним образом :
Підкладемо тепер в функцію (62) замість і їх значення у відношенні з відношенням (70) , отримаємо
звідки . Прирівняємо нулю і розв’язуючи отримаємо рівність , знаходимо . Таким образом ,
т.е. .
3. Ітерація . Градієнт функції f в точці є . Находимо максимальне значення функції при умовах (63) і (64). Розв’язком буде .
Знайдемо . Маємо
Розв’язуючи рівність , находимо . Слідуючи , ,, .
Таким образом , являється задовільним розв’язком даної задачі . Дана точка находиться достатньо близько до точки максимального значення цільової функції , найденої при розв’язку цієї задачі в п. 3.3. Задав меншу величину , можна було , зробивши доповнюючи приближення , ще ближче підійти до точки максимального значення цільової функції.