У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


Параметричний тест Гольдфельда-Квандта

Параметричний тест Гольдфельда-Квандта

Коли сукупність спостережень невелика, то розглянути вище метод не застосовний.

У такому разі Гольдфельд і Квант запропонували розглянути випадок, коли М (ии’)=, тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних медалі:

Y=ХА=u.

Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.

Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Хj.

Крок 2. Відкинути с спостережень, які мітять в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами с і n, де n – кількість елементів вектора хj:

.

Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень обсягом n1 =за умови, що обсяг n2 =перевищує кількість змінних m.

Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями S1 і S2:

S1=uu1,

Де u1 – залишки за моделлю (1);

S2=uu2,

Крок 5. Обчислити критерій

,

який в разі виконання гіпотези про гомоскедастичність відповідатиме F-розподілу з (n1-c-2m)/2, (n2-c-2m)/2 ступенями свободи. Це означає, що обчислення R* порівнюється з табличним значенням F-критерію для ступенів свободи (n-с-2m)/2 і (n-с-2m)/2 і вибраного рівня довіри. Якщо R*Fтабл, то гетероскедастичність відсутня.

Приклад 1. У табл. 1. наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.

Таблиця 1.

Номер спостереження | Витрати на харчування, ум.од. | Загальні витрати, ум. од. | u | u2

1 | 2,30 | 15 | 2,16 | 0,14 | 0,020

2 | 2,20 | 15 | 2,16 | 0,04 | 0,002

3 | 2,08 | 16 | 2,20 | -0,12 | 0,015

4 | 2,20 | 17 | 2,25 | -0,05 | 0,002

5 | 2,10 | 7 | 2,25 | -0,15 | 0,022

6 | 2,32 | 18 | 2,29 | 0,26 | 0,0007

7 | 2,45 | 19 | 2,34 | 0,11 | 0,012

8 | 2,50 | 20

9 | 2,20 | 20

10 | 2,50 | 22

11 | 3,10 | 64

12 | 2,50 | 68 | 2,37 | 0,13 | 0,016

13 | 2,82 | 72 | 2,52 | 1,29 | 0,085

14 | 3,04 | 80 | 2,68 | 0,36 | 0,128

15 | 2,70 | 85 | 2,99 | -0,29 | 0,084

16 | 3,94 | 90 | 3,18 | 0,76 | 0,573

17 | 3,10 | 95 | 3,38 | -0,28 | 0,076

18 | 3,99 | 100 | 3,57 | 0,42 | 0,178

Розв’язання.

Ідентифікуємо змінні:

Y – витрати на харчування, залежна змінна,

Х – загальні витрати, не6залежна змінна;

Y=f (X,u)

Для перевірки гіпотези про відсутність гетероскедастичності застосуємо параметричний тест Гольдфельда-Квандта.

Упорядкуємо значення незалежної змінної від меншого до більшого і відкинемо с значень, які містяться всередині впорядкованого ряду:

,

Визначимо залишки за цими двома моделями:

u= YІ-І;

u= YІІ-ІІ.

Залишки та квадрати залишків наведено в табл. 7.3.

Обчислимо залишкові дисперсії та знайдемо їх співвідношення:

Порівняємо критерій R* з критичним значенням F-критерію при і ступенях свободи і рвані довіри Р=0,99 Fа=0,01=11. Оскільки R*>Fкр, то вихідні дані мають гетероскедастичність.

Непараметричний тести Гольдфельда-Кванта

Гольдфельд і Квант для оцінювання наявності гетероскедастичності запропонували також непараметричний тест. Цей тест базується на числі піків у величини залишків після упорядкування спостережень за хij.

Закономірність зміни залишків, коли дисперсія є однорідною, - явище гемоскедастичності ілюструє рис. 1, а спостерігається явище гетероскедастичності.

Цей тест, звичайно, не такий надійний, як параметричний, але від досить простий.