У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


на його заключній стадії. Крім того, в більшості випадків напруження на вершині тріщини, що поширюється, неперервно збільшується. Це пов”язано з розширенням фронту поширення зламу та зменшенням поперечного перерізу об”єкту. У зв”язку з цим небезпечні признаки руйнування на заключній стадії зламу більш яскраво виражені.

При переході від зламів, що отримані в виробничих умовах, до зламів, що імітують їх (їх отримують при лабораторних випробуваннях в умовах прикладення статичного навантаження в пластичних металах та сплавах), часто знаходять паралельні сліди ковзання, які пов”язані з розкриттям в”язкої тріщини; їх не слід плутати з борознами зламу втоми.

По вигляду стику тріщин можна представити, яка з тріщин має більш раннє походження (мал. 5 ).

Дуже корисно знімати ескіз зразка у перспективній проекції. В цьому випадку, як на карті місцевості, вказують характерні особливості (признаки) зламу. Такий метод дозволяє швидко швидко отримувати загальні (оглядові) дані та по них складати заключення про історію руйнування даного зразка.

Слід звертати увагу на признаки (особливості) на поверхні руйнування, що часто повторюються, та не загострювати її на чисельних випадкових явищах.

При малих збільшеннях і особливо на зображеннях, що отримані за допомогою відбитих електронів, можна на основі пильного аналізу розгалудження при поширенні тріщин достатньо точно визначити (локалізувати) початок зламу. При вивченні зруйнованих поверхонь слід в першу чергу розглядати зображення у відбитих електронах, оскільки при цьому добре проявлюється топографія зламу.

Рентгенівський мікроаналіз при збудженні електронним променем

В РЕМ в результаті падіння електронного променя на поверхню зразка виникає рентгенівське випромінювання. Воно використовується для визначення складу присутніх у зразку елементів. Існують дві детекторні системи виявлення та співставлення характеристичного випромінювання: енергодисперсна система та дифракційно-дисперсна система.

Рентгенівський енергодисперсійний мікроаналіз

Основою енергодисперсійної системи є напівпровідниковий детектор, в якому кожний квант рентгенівського випромінювання, що поступає, викликає імпульс, пропорційний його енергії (мал.6). Послідовний ряд посилених імпульсів подається в багатоканальний аналізатор, який розподіляє сигнали, що виникають від квантів з різною енергією (мал.7). Енергодисперсійний рентгенівський детектор в растровому електронному мікроскопі знаходиться майже в площині зразка звичайно справа по відношенню до первинного променя. При растровому електронно-фрактографічному аналізі нахил зразка на 45о дозволяє отримувати високоякісні зображення у вторинних електронах. Цей кут є оптимальним і для досліджень, що використовують кванти рентгенівського випромінювання; мікрорентгеноспектральний аналіз може проводитись від багатьох точок з поверхні руйнування зразків. Для того, щоб детектор не загубив своїх аналітичних влвстивостей, він постійно охолоджується рідким азотом. Детектор встановлюється у вакуумі на відстані в декілька міліметрів за берилієвим екраном (товщина від 7 до 25 мкм). Таким чином поверхня детектора зберігається від забруднень та заледеніння. Нажаль, берилієві екрани сильно поглинають слабке рентгенівське випромінювання.

Іншим недоліком є велика ширина спектральних ліній, яка в деяких випадках не дозволяє розділити сусідні лінії. Оптимальна напівширина для максимуму в 5,9кеВ складає, наприклад, 140 еВ.

Переваги енергодисперсійної системи:

швидка експлуатаційна готовність. Установка може бути приведена в дію у будь-який момент часу між звичайною растровою зйомкою зламів з використанням вторинних електронів; перехід до рентгеноспектрального аналізу робиться за декілька секунд. При цьому відсутня необхідність в проведенні механічного юстування, а градуювання по енергії всієї системи коливається значно менше, ніж межі розділення по енергії;

за декілька хвилин одночасно можуть бути визначені всі елементи між натрієм і ураном; жоден з елементів не буде пропущений;

якісний аналіз та картини розподілення елементів можуть бути отримані від великих поверхонь (до7x5 мм2), а також від викривлених чи шершавих поверхонь, так як затежність від геометрії, згідно з умовою Брега (мал.8), в цьому випадку не має місця;

на зображенні, що отримане за допомогою вторинних електронів, можуть бути не тільки знайдені, але й ідентифіковані дрібні частинки; це відноситься також і до зразків з шершавою поверхнею;

можливості знайдення присутніх в металі елементів такі ж самі, як і при використанні дифракційно-дисперсійної системи (системі на основі дисперсії довжин хвиль); при цьому методі якісного аналізу можна визначати присутність елементів, вміст яких складає 0,1% (за масою) чи менше.

Обробка даних енергодисперсійних спектрів

Рентгенівський спектр складається з викривленої основної лінії неперервного гальмуючого випромінювання та характерістичних ліній окремих елементів. На прикладі свинця може бути показано, що для чіткої ідентифікації елементів в сплавах з невідомим складом необхідні відомості про фактично виникаючі лінії в енергоспектрометрі. Разом з відомими основними лініями можуть з”являтися більш слабкі лінії. Вони можуть спотворити дані про малі вмісти інших елементів.

В спектрах можуть з”являтися лінії, яких насправді не існує. Одна з ліній, наприклад, йде від Si-детектора і не залежить від швидкості лічби (середнього числа імпутьсів за визначений час лічби). Вона з”являється, коли рентгенівський квант, що падає, збуджує власне випромінювання “детекторного кремнію” і з детектора виходить рентгенівський квант з енергією 1,74 кеВ. В первинному енергетичному спектрі ця лінія відсутня, а потім з”являється слабка лінія з енергією 1,74 кеВ, яка розташована нижче дійсної лінії, - “пік витоку”. Це явище особливо помітне перед дуже інтенсивними лініями.

Інші хибні лінії можуть з”являтися внаслідок недосконалості багатоканального аналізатора. При високих швидкостях лічення аналізатор може додавати два послідовних імпульси, так що в результаті з”являється пік, що відповідає сумі двох енергій. В більшості випадків цей сумарний пік близікий подвоєній енергії головного піку відповідного елементу.

Границі виявлення

Границя виявлення обумовлена вимогою, щоб лінії чітко виділялися на основному фоні. Інтенсивність ліній повинна бути більшою, ніж інтенсивність фону на три стандартних відхилення. Малісса і Русс визначили границю виявлення на основі


Сторінки: 1 2 3 4