хворих, поділених на 6 груп. Одну з груп опромінювали “перервним” курсом ВЛОК: тривалість одного сеансу – 20 хв, потужність на виході світловоду 3 мВт з відключенням лазерної установки через кожні 2 хвилини опромінення на 1 хвилину. Отримані результати показали можливість використання ВЛОК при лікуванні раку легень. Було показано, що кращих результатів досягають при опроміненні “перервним” курсом і в поєднанні з певними лікарськими препаратами.
Отже, досить актуальним є створення штучної моделі біологічної системи. З цією метою нами проведено дослідження щодо визначення впливу модульованого за інтенсивністю низькоінтенсивного лазерного світла на фізико-хімічні властивості світлочутливої композиції.
Нами вивчено кінетику фоторозпаду органічного барвника в поліуретанакрилатній матриці в умовах радикальної полімеризації при перервному опроміненні. Вимірювання фотостійкості відбувалося шляхом реєстрування змін початкового пропускання Т0 в умовах слабкого опромінення випромінюванням одномодового He-Ne лазера ЛГ-52, 8 мВт (0,632 мкм) за схемою, що на рис. . Експериментальні зразки ставили в перетяжку каустики додатної лінзи з фокусною відстанню f=18 см (200 мкм). У дослідженнях фіксувалась потужність падаючого випромінювання (І1) і випромінювання (І2), що проходитя через зразок за дискретні проміжки часу. Чутливість системи вимірювання (вольтметр-фотодіод) калібрувалася за допомогою калориметра ІМО-2Н. Значення пропускання Т(%) визначалося як відношення Т=(І2/І1)К100%, де К – коефіцієнт пропорційності, який визначається при калібруванні й залежить від чуттєвості фотоприймачів. Спостерігалася (рис. ) ступінчаста кінетика фоторозпаду, коли після кожної зупинки опромінення (tmin=10 сек) швидкість фоторозпаду суттєво зростала.
Ступінчасті кінетичні процеси в радикальній термофотополімеризації описані у монографії [7]. Подібні кінетики спостерігались при зміні умов отримання вільних радикалів: ступінчаста зміна температури полімеризації; розтяг зразка в будь-якій точці початкової кінетичної кривої; при перериванні процесу опромінення актинічним світлом. Згідно [7], адекватної теорії цього явища немає.
Розглянемо можливий механізм явища. Стала реакції росту ланцюга kp характеризує середню активність макрорадикалів у кожний проміжок часу: є макрорадикали з великим kp і з меншим kp в об’ємі зразка. В процесі реакції розподіл деформується так, що концентрація макрорадикалів з малим kp зростає, а концентрація з великим kp зменшується так, що середня швидкість росту ланцюга зменшується (кінетичні зупинки реакції). Якщо будь-яким чином поновити деформований розподіл kp(x,y,z,t), то реакція відновлюється з попе-редньою швидкістю за рахунок появи молекул із більшим kp. Деяке відновлення початкового розподілу kp(x,y,z,t) в наших умовах ми здійснюємо, якщо зупиняємо вироблення ради-калів ініціатора шляхом переривання актиніч-ного опромінення. Дійсно, тривалість життя макрорадикалів на середніх і пізніших стадіях полімеризації складає десятки секунд [8], тривалість життя хімічно реакційних збуджених молекул барвника приблизно 1 нс і менше. Вимкнення світла супроводжується різким зменшенням швидкості фоторозпаду, оскільки в реакції фоторозпаду з участю макрорадикалів найбільш активні збуджені молекули, а поліме-ризація композита продовжується протягом десятків секунд практично в тому ж темпі. У результаті досягнутий до моменту зупинки розподіл kp(x,y,z,t) в реакції постполімеризації, в певному розумінні, відновлюється. Тому при новому ввімкненні світла через tmin=20 сек швидкість фоторозпаду барвника знову зростає. Отже, максимальна швидкість фоторозпаду визначається концентрацією електронно-збуджених молекул барвника.
Вивчення кінетики фоторозпаду в умовах радикальної полімеризації при перервному опроміненні вказує на ще один шлях зменшення фоторозпаду молекул органічного барвни-ка – використання реакції постполімеризації – і таким чином, збільшення енергетичної ефективності лазера на барвнику.
Досліджені авторами процеси в світлочутливій композиції дозволяють за певних умов перенести результати експериментів на біологічні системи, тобто створити модель одного із процесів, що відбуваються в живій тканині під дією модульованого за інтенсивністю випромінювання лазера:
- опромінювати максимальну кількість червоних кров’яних тілець в момент їхньої максимальної концентрації в судині поблизу світловоду;
понизити лазерне опромінення стінок біологічної системи, судини за рахунок зниження інтенсивності лазерного випромінювання і зменшення його кутового розходження на виході світловоду;
зменшити тепловий вплив лазерного випромінювання на організм;
об’єктивізувати облік дози енергії, що поглинається.
Наступні дослідження авторів будуть проводитися за цими напрямками.