У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


Тема: Основні задачі математичної фізики.

Лекція №1

План

Приклади фізичних процесів, що приводять до крайових задач для диференціальних рівнянь в частинних похідних. Приклади постановок таких задач. Класифікація диференціальних рівнянь 2-го порядку в частинних похідних. Рівняння коливань струни. Розв’язок задачі Коші методом Даламбера

Питання для самоконтролю.

Лекція №1.

В чому полягає дисципліна: рівняння математичної фізики? Від чого залежить розв’язування рівнянь з частинними похідними 2-го порядку? Приклади рівнянь еліптичного типу. Як називається і до якого типу належить рівняння:

?

В чому полягає крайова задача для рівняння коливання струни? Записати формулу Даламбера, яка дає розв’язок одномірного однорідного хвильового рівняння.

Література:

А.Н.Тихонов, А.А.Самаровский “Уравнения математической физики”, Гостехиздат, 1954. Н.С.Пискунов “Диференциальное и интегральное исчисление”, т.ч., Москва, 1972. П.И.Чинаев, Н.А.Минин и др. “Висшая математика, специальные главы”, Киев, 1981. О.В.Мантуров та ін. “Математика в поняттях, означеннях, термінах”, т.ч., Київ, 1986. П.Е.Данко, А.Г.Попов “Высшая математика в упражнениях и задачах”, ч.2, Москва, 1974.

Лекція №1.

Тема: Основні задачі математичної фізики.

В курсі вищої математики вивчалися звичайні диференціальні рівняння, розв’язками яких є функції відносно аргументу. Але багато задач в математиці, фізиці, електроніці, радіотехніці та в інших науках приводять до диференціальних рівняннь відносно функцій двох, трьох та більше числа аргументів – диференціальні рівняння в частинних похідних.

Існує спеціальна дисципліна, яка полягає в математичному опису явищ, пов’язаних з деякими фізичними процесами, що описуються за допомогою рівняннь у частинних похідних і (рідко) за допомогою інтегральних рівняннь або інтегро-диференціальних рівняннь. Ця математична диспліна називається рівняннями математичної фізики.

Провідне місце в рівняннях математичної фізики посідає теорія рівняннь з частинними похідними 2-го порядку:

де аij, bi, c – задані функції змінних х1, х2, …, х3 (n 2). Властивості розв’язування цих рівняннь істотно залежать від знаків коренів характеристичного рівняння det(|| alk|| - E)=0. Так для диференціального рівняння з частинними похідними 2-го порядку характеристичне рівняння буде:

d11dy2-2a12dxdy+a22dx2=0.

Інтеграли цього рівняння називаються характеристиками.

Це характеристичне рівняння можна записати й так

Якщо а12-а11а22>0, то інтеграли характеристичного рівняння (х,у)=С1 і (х,у)=С2 дійсні і різні. В цьому випадку кажуть, що рівняння має гіперболічний тип.

Якщо , то характеристичне рівняння має комплексні (спряжені) загальні інтеграли і є рівнянням еліптичного типу.

І якщо , то характеристичне рівняння має комплексні (спряжені) загальні інтеграли і є рівнянням еліптичного типу.

До рівнянь гіперболічного типу приводять задачі про коливання суцільних середовищ і задачі про електромагнітні коливання: процеси поперечних коливань струни, поздовжніх коливань стержня, електричних коливань в проводі, крутильних коливаннь валу, коливань газу і т. д.

Найпростішим з них є хвильове рівняння , відкрите Ейлером у 1759році.

Рівняння параболічного типу дістають при дослідженні таких фізичних явищ, як теплопровідність, дифузія, поширення електромагнітних хвиль у провідних середовищах, рух в’язкої рідини, деякі питання теорії імовірностей і т. д.

Найпростішим з них є рівняння теплопровідності, або рівнянням Фур’є:

До рівняннь еліптичного типу приводить вивчення різних стаціонарних процесів (електростатика, магнітостатика, потенціальний рух рідини, що не стискується, тощо). Найпростішими з них є рівняння U=0 (Лапласа); U=C (Пуассона), а також рівняння, яке розглядав Ейлер: U+kU=0, і полігармонійні рівняння.

В кожному з цих типів рівняннь шукана функція U залежить від двох змінних. Розглядаються також відповідні рівняння і для функції з більшими числом змінних. Так хвильове рівняння з трьома незалежними змінними має вид:

рівняння теплопровідності з трьома незалежними змінними має вид:

рівняння Лапласа з трьома незалежними змінними має вид:

Тема: Рівняння коливань струни.

В математичній фізиці під струною розуміють гнучку ніть. Напруги, що з’явились в струні в любий момент часу, напрямлені по дотичній до її профелів. Нехай струна довжини l в початковий момент напрямлена по відрізку осі 0Х від 0 до l. Припустимо, що кінці струни закріплені в точках Х=0 і Х=l. Якщо струну відхилити від її початкового положення, а потім предоставить самій собі або, не відхиляючи струни, придати в початковий момент її точкам деяку швидкість, або відхилити струну і придати її точкам деяку швидкість, то точки струни будуть виконувати рух – говорять, що струна починає коливатись. Задача заключається у ввизначенні форми струни в любий момент часу і у визначенні закону руху кожної точки струни в залежності від часу.

Розглянемо малі відхилення точок струни від початкового положення. В силу цього можна припускати , що рух точок струни проходить перпендикулярно осі 0Х і в одній площі. При цьому препущенні процес коливань струни описується однією функцією u(x,t), яка дає величину переміщення точки струни з абсцисой х в момент t (рис.1).

Так як ми розглядаємо малі відхилення струни в площі (x,u), то будемо припускати, що довжина елемента струни М1М2 рівна її проекції на вісь 0Х, М1М2=х2-х1. Також будем припускати, що натяг в усіх точках струни однаковий; позначимо його як Т.

Розглянемо елемент струни ММ' (рис 2).

На кінцях цього елемента, по дотичним до струни, діють сили Т. нехай дотичні створять з віссю 0Х кути та + . тоді проекція на вісь 0u сил, діючих на елемент ММ', буде рівна Тsin(+)-Tsin. Так як кут малий, то можна покласти tg=sin, і ми отримаємо :

(тут ми примінили теорему Лагранжа до виразу, що стоїть у квадратних душках).

Щоб получити рівняння руху, потрібно зовнішні сили прирівняти силі інерції. Нехай - лінійна щільність струни. Тоді маса елемента струни буде х. Прискорення елемента дорівнює . Отже, по принципу Даламбера будем мати:

Скорочуючи на х і позначаючи , получаємо рівняння руху . (1)

Це і є хвильове рівняння – рівняння коливань струни. Для повного визначення руху струни одного рівняння


Сторінки: 1 2 3 4