позбавляється тимчасової асиметрії.
Тимчасова асиметрія - це реальний факт. Впорядкованість реальних систем може виникати за рахунок зовнішніх впливів, а не за рахунок внутрішніх безладних флуктуацій (будинок, наприклад, споруджується будівельниками, а не в результаті внутрішніх хаотичних прямувань). У реальності всі системи формуються під впливом навколишнього середовища. Для розрізнення реальних систем, що, відокремлюючись від навколишнього Всесвіту, приходять у стан з низькою ентропією, і больцманівських постійно ізольованих від навколишнього середовища систем, Г.Рейхенбах назвав першими структурами.Дана структура поводиться асиметрично в часу через схований вплив ззовні. При цьому причина асиметрії - не в самій системі, а у впливі. У реальному світі больцманівських систем немає.
Асиметричні в часі процеси існують також за межами термодинаміки. Прикладом таких процесів можуть бути хвилі (у тому числі радіохвилі). Так, радіохвилі поширюються від передавача в навколишній простір, але не навпаки. Аналогічно існує справа з поширенням хвиль від кинутого в ставок каменю. Хвилі, що утворилися, поширюються у різні сторони,і називаються запізнілими. В принципі можливі хвилі, що випереджають їх появу, можуть виникати тоді, коли обурення спочатку проходять через віддалену точку, а потім сходяться в місці поширення джерела хвилі. Ізольований ставок є симетрична в часі системою, як і больцманівська посудина з газом. Кинутий у нього камінь створює розгалуджену структуру. Радіохвиля ж зворотно не повернеться, тому що поширюється в безмежному просторі. Тут ми маємо справу з необмеженою диссипацією (розсіюванням) хвиль і частинок, що являє собою ще один тип необоротної тимчасової асиметрії. Виходить, утворення структур, що розгалуджуються, і необоротна асиметрія безкінечного хвилястого прямування роблять необхідним врахувати великомасштабні властивості Всесвіту.
г) Третій початок термодинаміки (теорема Нернста) : ентропія фізичної системи під час наближення температури до абсолютного нуля не залежить від параметрів системи і залишається незмінною. Інші формулювання теореми: при наближенні температури до абсолютного нуля всі зміни стану системи не змінюють її ентропії; за допомогою кінцевої послідовності термодинамічних процесів не можна досягти температури,що дорівнює абсолютному нулю. М.Планк доповнив теорему гіпотезою, відповідно до якої ентропія всіх тіл при абсолютному нулі температури дорівнює нулю. З теореми випливають важливі наслідки про властивості речовин при температурах, близьких до абсолютного нуля: набувають нульового значення питомі теплоємності при сталому об’ємі і тиску. Крім того, із теореми випливає недосяжність абсолютного нуля температури при кінцевому стані термодинамічних процесів.
Якщо перший початок термодинаміки підтверджує, що теплота є форма енергії, що вимірюється механічною мірою, і неможливість вічного двигуна першого роду, то другий початок термодинаміки заперечує створення вічного двигуна другого роду. Перший початок увів функцію стану - енергію, другий початок увів функцію стану - ентропію. Якщо енергія закритої системи залишається незмінною, то ентропія цієї системи при кожній зміні збільшується - зменшення ентропії суперечить законам природи. Співіснування таких незалежних один від одного функцій стану, як енергія й ентропія,що дає можливість робити висновок про теплову поведінку тіл на основі математичного аналізу. Оскільки обидві функції обчислювалися лише стосовно довільно обраного початкового стану то повністю визначити енергію й ентропію не є можливість зробити. Третій початок термодинаміки дав можливість усунути цю проблему. Важливе значення для розвитку термодинаміки мали встановлені Ж.Л.Гей-Люсаком закони - закон теплового розширення і закон об'ємних відношень. Б.Клапейрон установив залежність між фізичними величинами, що визначають стан ідеального газу (тиском, об’ємом і температурою),яку узагальнив Д.И.Менделєєвим.
Таким чином, концепції класичної термодинаміки описують стани теплової рівноваги і рівноважні (які протікають нескінченно повільно, тому час в основні рівняння не входять) процеси. Термодинаміка нерівновагових процесів виникає пізніше - у 30-х рр. ХХ сторіччя. У ній стан системи визначається локальні термодинамічні параметри, що розглядаються як функції координат і часу.
Розділ 2
Теплові двигуни і холодильники
Неважко одержати теплову енергію за рахунок здійснення роботи, наприклад досить сильно потерти одну долоню об іншу, цієї ж мети можна досягти в будь-якому процесі за участю тертя. Однак одержати механічну роботу за рахунок теплової енергії значно складнішне, і практично корисний пристрій для цієї мети було винайдено лише близько 1700р. на основі парової машини.
Мал.1 Мал.2
Основна ідея, що лежить в основі будь-якого теплового двигуна, полягає в тому, що механічна енергія може бути отримана за рахунок теплової, тільки якщо дати можливість теплоті переходити з області з високою температурою в область з низькою температурою, причому в процесі цього переходу частина теплоти може бути перетворена в механічну роботу. Висока Тн і низька TL температури називаються робочими температурами двигуна, і надалі для спрощення ми будемо вважати, що ці температури забезпечуються двома термостатами, що знаходяться при постійних температурах Тн і TL. Нас будуть цікавити тільки теплові двигуни, що роблять періодичні робочі цикли (тобто вся система періодично повертається у вихідний стан) і в такий спосіб можуть діяти постійно.
Сучасні парові двигуни підрозділяються на два основних типи. У двигунах так званого оборотного типу нагріта пара проходить через впускний клапан і потім розширюється в просторі під поршнем, змушуючи його рухатися; після того як поршень повертається у своє вихідне положення, він витісняє гази через випускний клапан. У паровій турбіні відбувається, власне кажучи, те ж саме; розходження лише в тому, що поршень який рухається обертально-поступально замінюється турбіною, яка обертається і нагадує колесо греблі з численними лопастями. За допомогою парових турбін1* виробляється велика частина одержуваної в даний час електроенергії. Речовина, що нагрівається і охолоджується (у даному випадку пара), називається робочим тілом. У