та іонами. Тобто, за відсутності зовнішніх електромагнітних полів кожен електрон рухається прямолінійно з постійною швидкістю. Потім вважають, що за присутності зовнішніх полів е- рухається у відповідності із законами Ньютона; при цьому враховують вплив тільки тих полів, нехтуючи складними додатковими полями, що породжується іншими е- та іонами. Наближення в якому нехтують електрон-електронною взаємодією у проміжках між зіткненням відомо під назвою наближення незалежних електронів. Відповідно, наближення, в якому нехтують електрон-іонною взаємодією називається наближенням вільних електронів. Потім виявиться, що наближення незалежних електронів є успішним у багатьох відношеннях, тоді як від наближення вільних е- приходиться відмовитися, навіть якщо ми хочемо досягнути лише якісного розуміння поведінки металів.
В моделі Друде, як і в кінетичній теорії, зіткнення - це миттєва подія, що раптово змінює напрям швидкості е-. Друде пов’язував їх з тим, що е- відбиваються від непроникних осердь іонів (він не вважав їх електрон-електронним зіткненням по аналогії із домінуючим механізмом зіткнення у звичайному газі). Далі виясниться, що при звичайних умовах розсіювання е- на е- дійсно являється одним із найменш істотніх механізмів розсіювання в металі. Однак, проста механічна модель (мал. 2), згідно якої е- відскакує від іона , дуже далека від дійсності. Мал.2 Траєкторія руху електронів провідності ,що розсіюються на іонах, у відповідності із наївними уявленнями Друде.
Траєкторія електронів провідності, що розсіюється на іонах, у відповідності із наївними уявленнями Друде.
У багатьох задачах це не важливо: для якісного дослідження (і навіть для кількісного) поняття провідності металів достатньо просто припустити існування якогось механізму розсіювання, не вияснюючи, який саме той механізм. Використовуючи в аналізі лише декілька загальних властивостей процесу зіткнення, ми можемо не зв’язувати себе конкретною картиною зіткнення. Ці загальні характерні риси описуються наступними припущеннями :
Будемо вважати, що за одиницю часу е- відчуває зіткнення ( тобто, раптово змінює швидкість ) із ймовірністю, яка дорівнює 1/ф. Мається на увазі, що для е- ймовірність випробовувати зіткнення протягом нескінченно малого проміжку часу
dt=dt/ф
Час ф називається часом релаксації або часом вільного пробігу; воно відіграє фундаментальну роль в теорії провідності металів. Із цього припущення випливає, що е-вибраний навмання у цей момент часу, буде рухатися в середньому протягом часу ф не залежить від просторового положення е- і його швидкості (ця гіпотеза справді хороша).
Припускається, що е- приходять в стан теплової рівноваги із своїм оточенням виключно завдяки зіткненням. Вважається, що зіткнення підтримують локальні термодинамічні рівноваги надзвичайна простим способом
Швидкість е зразу після зіткнення не зв’язана з швидкістю до зіткнення, а направлена випадковим чином, причому її величина відповідає тій температурі, яка переважає в області, де проходило зіткнення. Тому чим гарячішою буде область, де проходить зіткнення, тим більшою швидкістю володіє електрон після зіткнення. У наступній частині-ілюстрація цих положень.
3. Статична електропровідність металу.
У відповідності із законом Ома струм I через провідник обернено пропорційний опору R провідника прямо пропорційний напрузі U вздовж провідника:
U=I/R
Опір провідника R залежить від його розмірів, але не залежить від величини струму або падіння напруги. Модель Друде дозволяє пояснити таку залежність і оцінити величину опору.
Зазвичай залежність R від форми провідника забирають ,вводячи нову величину, що характеризує лише сам метал, із якого зроблений провідник. Питомий опір с визначається як коефіцієнт пропорційності між напруженістю електричного поля
Е в деякій точці металу і визнаною ним густиною струму:
Е=j/с (3)
Густина струму j –це вектор ,паралельний потоку зарядів, його величина дорівнює кількості заряду, що проходить за одиницю часу через одиничну площадку перпендикулярну до потоку. Тому, якщо через провідник довжиною і площиноюпоперечного перерізу S йде постійний струм I, то густина струму дорівнює:
j=I/S
Так, як падіння напруги на провіднику:
U=Е/L
то з формули (3) випливає, що:
U=(I/L/g)/S і як наслідок
R=(L/g)/S
Якщо всі n e- в одиниці об’єму рухаються з однаковою швидкістю Vc, то густина струму паралельна Vc. Далі за час dt е- змістяться на відстань Vdt у напрямку Vc, тому за цей час площину S перпендикулярну до напрямку струму перетнуть n(Vdt) S електронів. Так як кожний електрон несе заряд –е ,повний заряд,що перетинає S за час dt становить –neVSdt і як наслідок, густина струму :
J=-enVc (4)
У довільній точці металу електрони завжди рухаються у найрізноманітніших напрямках і володіють різними тепловими швидкостями. Сумарна густина струму, що виражається формулою (4), де Vc –середня швидкість електронів. За відсутності електричного поля всі напрямки руху електронів рівноймовірні і середнє значення Vc перетворюється в 0, а відповідно сумарна густина струму теж дорівнює 0.За присутності поля Е середня швидкість електронів відмінна від 0 і напрямлена протилежно до поля( так як заряд е- від’ємний)Цю швидкість можна знайти таким чином:
Розглянемо довільний електрон в нульовий момент часу.
Нехай t- це час, що пройшов після його останнього зіткнення. Швидкість даного електрона в нульовий момент часу буде дорівнювати його швидкості V0 безпосередньо після зіткнення плюс додаткова швидкість -еЕt/m, яку електрон набув після зіткнення. Так як ми припускаємо,що після зіткнення швидкість електрона може мати довільний напрямок,внесок від V0 в середню швидкість електрона дорівнює середньому значенню величини –еЕt/m. Однак, середнє значення t дорівнює часу релаксації ф.Тому маємо:
V=-eEф/m ; J=(neІф/m)E (5)
Цей результат зазвичай формулюють, використовуючи характеристику, обернену питомому опору, - провідність
у=1/g
J=уE; у=ne2ф/m (6)
Таким чином, ми отримали лінійну залежність J від Е і найшли для провідності у вираз,в який входять лише відомі величини і час релаксації ф.