Як наслідок, використовуючи (6 ) і дослідні значення питомого опору можна визначити, скажімо величину часу релаксації:
ф=m/ngeІ
Питомий опір дуже залежить від температури. При кімнатній температурі питомий опір залежить від температури приблизно лінійно, але при досягненні низьких Т він різко зменшується. Таким чином, при кімнатній температурі питомі опори зазвичай мають порядок одного мікроом-сантиметра. Якщо gм-питомий опір, виражений в мкОм/см, співвідношення (7) для часу релаксації зручно записати у вигляді:
ф=(0.22/gм)(rs/a0)3·10-14c. (8)
Отже, при кімнатній температурі ф виявляється порядку
10-14-10-15 с. Щоб зрозуміти, чи є це розумним значенням , корисно розглянути середню довжину вільного пробігу l=V0*t, де V0 –середня швидкість електрона. Довжина l характеризує середню відстань, що проходить е- між зіткненнями. У часи Друде було очевидно оцінювати V0 виходячи із класичного закону рівномірного розподілу енергії за степенями вільності:
Ѕ mV0 І=3/2kвT
Підставляючи сюди відому масу електрона знаходимо, що V0 має порядок 107 см/с при кімнатній температурі і, як наслідок, довжина вільного пробігу становить від 1 до 10?. Так як ця відстань порівняно з міжатомною, результат повністю узгоджується з припущеннями Друде про те, що зіткнення пояснюється співударом електронів з великими важкими іонами. Однак, в подальшому ми побачимо, що класична оцінка при кімнатній температурі дає значення V0 на порядок величини меньше дійсного( реального). Крім того ,при найбільш низьких температурах ф на порядок величини більший,ніж при кімнатній температурі. Оскільки V0 в дійсності не залежить від температури (це показано далі), то виявляється, що при низьких температурах довжина вільного пробігу може зрости до 103 і більше ?, тобто, в 1000раз перевищувати міжіонною відстань. Зараз, працюючи при достатньо низьких Т із ретельно приготованими зразками, можна досягнути середніх довжин вільного пробігу порядку 1 см (тобто, біля 108 міжіонних відстаней). Це явно вказує на те, що електрони не просто співударяються з іонами, як припускав Друде. Однак, ми можемо далі використовувати для розрахунків модель Друде, хоча і не до кінця розуміємо природу зіткнення. Не маючи теорії часу вільного пробігу, важливо знайти такі припущення моделі Друде, які не залежать від величини часу релаксації ф. Виявляється, існує декілька подібних не залежних від ф величин, які і досі цікавлять, оскільки у багатьох відношеннях точний кількісний розгляд часу релаксації залишається найслабшою ланкою у сучасній теорії провідності металів. В результаті незалежні від ф величини є наібільш цінними, тому що часто вони дають найнадійнішу інформацію. Особливо важливі два випадки:
1.Розрахунок електропровідності при наявності просторово- однорідного постійного магнітного поля;
2. Розрахунок електропровідності при наявності просторово-однорідного, але незалежного від часу електричного поля.
В обох випадках зручно користуватися наступним зауваженням:у кожен момент часу t середня швидкість електронів:
Vc =p(t)/m,
де р-середній імпульс, тобто, повний імпульс, що приходиться на один електрон. Як наслідок, густина струму :
J=-(nep(t))/m
Нехай в момент часу t середній імпульс електронів –р(t).Обчислимо тоді p(t+dt)-середній імпульс одного електрона по завершенню нескінченно-малого проміжку часу dt. Ймовірність того ,що взятий навмання в момент часу t електрон випробував зіткнення до моменту t+dt, дорівнює dt/ф, тому ймовірність того, що він доживе до моменту часу t+dt без зіткнень дорівнює 1-dt/ф.Однак, коли електрон не переживає зіткнень, він просто рухається під дією сили f(t)(обумовленої просторово-однорідним електричним або магнітним полем) і набуває тому додатковий імпульс:
f(t)dt+O(dt)І.
Електрони не переживши зіткнень в інтервалі між моментами часу t і t+dt, додають в імпульс, що приходиться на один електрон в момент t+dt внесок, який дорівнює добутку (1-dt/ф) (тобто, відношення числа таких електронів до повного їх числа) на середній імпульс даного такого електрона:
p(t)+f(t)dt+O(dt)І
Тому нехтуючи поки що внеском в p(t+dt) від тих електронів, які пережили зіткнення за час між t і t+dt одержуємо:
p(t+dt)=(1-dt/ф)[p(t)+f(t)dt+O(dt)І]=p(t)-(dt/ф)p(t)+f(t)dt+O(dt)І (10)
Поправка до (10) за рахунок тих електронів,які випробували зіткнення в інтервалі від t до t+dt виявляється лише порядку (dt)І. Крім того,оскільки безпосередньо після зіткнення швидкість (і імпульс) направлені довільним чином , кожен такий електрон буде робити внесок в середній імпульс p(t+dt) лише завдяки тому, що за час після останнього зіткнення він набув за рахунок сили f деякий імпульс. Цей імпульс набувається за проміжок часу не більший за dt і тому має порядок f(t)dt. Як наслідок, поправка до (10) виявляється порядку(dt/ф)f(t)dt і не впливає на складові, лінійні по dt. Таким чином, можна записати :
P(t+dt)-p(t)=-(dt/ф)p(t)+f(t)dt+O(dt)І, (11)
Де O(dt)-складова порядку (dt)І,де врахований внесок в p(t+dt)всіх електронів. Поділивши на dt і взявши границю при dt 0,знайдемо:
dp(t)/dt=-p(t)/ф+f(t) (12)
Це рівняння означає ,що еффект зіткнення окремих електронів зводиться до введення в рівняння руху для імпульса ,що приходиться на один електрон додаткового члена,що описує згасання за рахунок тертя.
4. Ефект Холла і магнетоопір
У 1879 р. Холл намагався вияснити, чи діє сила, випробувана провідником зі струмом в магнітному полі на весь провідник чи лише на один електрони, що рухаються в провіднику. Сам він підозрював друге і його експеримент оснований на тому, що якщо електричний струм у закріпленому провіднику сам притягується до магніту, то цей струм повинен підходити все ближче до однієї із сторін провідника і тому досліджуваний ним опір повинен зростати. “Його спроби виявити такий додатковий опір виявилися безуспішними , але Холл вважав, що це дозволяє робити остаточні висновки: ”Магніт може намагатися відхилити струм, не маючи здатності зробити це. Очевидно, в такому випадку у провіднику існував би стан напруги ,ніби як електричний струм, що діє у напрямку однієї із