матрицею. Якщо є два базиси, то матриці переходу від одного до іншого взаємно обернені.
Нехай в задано два базиси (6) і (7) з матрицею переходу Зв’язок між координатами довільного вектора в цих двох базисах дає формула:
(11)
Помноживши рівність (11) зліва на матрицю Т-1 одержимо рівність
(12)
яка дає можливість одержати координати вектора в новому базисі е’.
Власні числа і власні вектори матриці.
Нехай деяка квадратна матриця розмірності з дійсними елементами, - деяке невідоме число. Тоді матриця , де Е - оди-нична матриця називається характеристичною матрицею для матриці А.
Поліном n-го степеня || називається характеристичним поліном матриці А, а його корені називаються власними числами матриці А.
Можна стверджувати, що подібні матриці мають однакові характерис-тичні поліноми і, як наслідок, однакові власні числа.
Наслідок: лінійне перетворення в різних базисах має різні матриці, але всі вони мають однакові власні числа. Тому можна твердити, що ліній-не перетворення характеризується набором власних чисел, які в подаль-шому будемо називати спектром лінійного перетворення , або спектром матриці А.
Розглянемо лінійне перетворення в просторі таке, що переводить відмінний від нуля вектор в вектор пропорційний самому вектору , тобто:
(1)
Такий вектор будемо називати власним вектором перетворення , а - власним числом, що відповідає цьому власному вектору.
Розглянемо тепер задачу відшукання такого базису для лінійного перетворення , в якому б його матриця мала найпростіший діагональний вигляд.
Будемо вважати, що лінійне перетворення має такий характеристич-ний поліном, що всі його корені дійсні і різні між собою. Тобто, розв'язавши рівняння n-го порядку || = 0 будемо мати n-різних дійс-них коренів . Якщо виконується така умова, то лінійне пере-творення дійсного лінійного простору має простий спектр.
Кожному власному числу , відповідає свій власний вектор. Власних векторів у цьому випадку буде також n. Вони утворюють лінійно незалежну систему векторів, їх можна розглядати як базис , в якому матриця лінійно-го перетворення А буде набувати найпростішого діагонального вигляду.
Розв’язання лінійних
рівнянь методом Гауса.
Метод Гауса розв’язування системи лінійних алгебраїчних рівнянь полягає в послідовному виключенні змінних і перетворенні системи рівнянь
(1)
до трикутного вигляду
;
.............. (2)
Припустимо, що в системі (1) коефіцієнт а11. Якщо ця умова не виконується, то на перше місце переносимо таке рівняння, щоб виконувалась умова а11.
За допомогою першого рівняння виключимо х1 із решти рівнянь. Обчислення виконаємо в таблиці:
х1 х2 ... хn 1
Іноді вводять контрольний стовпець що дає змогу виявляти помилки.
Поділивши перший рядок на а11, позначимо
Далі перший рядок множимо послідовно на а21 і віднімаємо від другого рядка, множимо на а31 і віднімаємо від третього рядка і т.д.
Позначивши
дістанемо таблицю коефіцієнтів:
х1 х2 ... хn 1
Для невідомих , маємо систему n-1 рівнянь. Міркуючи, як і раніше, виключимо х2 з усіх рівнянь, починаючи з третього. Для цього спочатку поділимо другий рядок на . Якщо коефіцієнт , то переставимо рівняння так, щоб виконувалася умова .
Позначивши
,
помножимо другий рядок послідовно на і віднімемо від третього рядка; на і віднімемо від четвертого рядка і т.д. Дістанемо таблицю коефіцієнтів:
х1 х2 х3 ... хn 1
Продовжуючи процес виключення невідомих, дістанемо нарешті таблицю:
х1 х2 х3 ... хn-1 хn 1
Таблиця коефіцієнтів при невідомих набирає трикутного вигляду. На головній діагоналі всі елементи . Запишемо відповідну систему рівнянь:
Цю систему розв’язують, починаючи з останнього рівняння. Спочатку знаходить хn і підставляють в передостаннє рівняння, з якого визначають хn-1, і т.д.