за теоремою синусів для бісектриси СD = отримаємо:
звідки
З АСВ за тією самою теоремою для |СВ| знаходимо:
Підставимо останнє значення |СВ| у праву частину виразу для бісектриси , отримаємо:
(х)=
Легко переконатись, що
Розв’язавши рівняння
знаходимо критичні точки функції (х):
Рівняння розв’язку не має. Тільки при к=0 х є (), тому х=. Але тоді також і <CАВ = , а це означає, що АВС – рівнобедрений. Якщо х є (0; ), то і функція зростає, а якщо n є (; ), то і (n)<0 і функція спадає. А це означає, що n = - єдина точка максимуму на (0; ), в якій функція набуває найбільшого значення: . Отже, з усіх трикутників із заданою основою і протилежним кутом рівнобедрений має найбільшу бісектрису.
Задача 5. З усіх трикутників із заданими основою с і периметром 2р знайти той, у якого опущена на основу висота є найвищою.
Розв’язання Якщо а, b, с – довжини сторін трикутника, а 2р – його периметр, то .
Нехай . Позначимо |AC|= x, тоді |CB|=2p-c-x. Підставимо ці значення замість a i bу формулу для hc, отримаємо функцію:
.
, тоді коли
Функція досягає найбільшого значення тоді, коли його досягає функція . А це квадратична функція, яку можна подати у такому вигляді:
Тоді є єдиною точкою максимуму функції і . Тому функція у точці набуває найбільшого значення: . Але при , а це означає, що АВС – рівнобедрений. Отже, з усіх трикутників із даними основою і периметром рівнобедрений має найбільшу висоту.
Задача 6. З усіх трикутників із заданими основою с і периметром 2р знайти той, у якого проведена до основи медіана є найменшою.
Розв’язання. Довжина медіани me трикутника визначається через довжини його сторін а, b, с за такою формулою:
.
Нехай у АВС ; |AB|=c i |AD|=|DB|. Введемо позначення: |AC|=x, 0<x<2p-c. Тоді |CB|=2p-c-x. Підставивши ці значення замість a, b, c у формулу для mc, отримаємо:
Оскільки
,
то розв’язавши рівняння
2р-с-2х = 0,
знаходимо критичну точку функції me(х):
. Легко переконатися, що m/e(х)<0, якщо х є (0; ), і m/e(х)>0, якщо х є (; 2р-с), тому є точкою мінімуму функції me(х), причому me()=. Оскільки - єдина точка мінімуму на (0; 2р-с), то функція me(х) у точці набуває найменшого значення. Але при х = |AC| = = також i |CB| = , а це означає, що АВС – рівнобедрений. Отже, з усіх трикутників із заданими основою і периметром рівнобедрений має найменшу медіану.
Задача 7. З усіх рівнобедрених трапецій, три сторони яких мають однакову довжину а, знайти ту, яка має найбільшу площу.
Розв’язання.
Нехай |AB| = |BC| = |CD| = a, <BAD = x, 0<x<.
Тоді |BE| = a sin x, |AE| = a cos x, а площа трапеції:
S(x)=a2sin x (1+cos x),
Оскільки
S/(x) = a2(2cos2x + cos x - 1) = a(cos x +1)(2 cos x - 1), S(x): xk = tarccos+2k, k0.
В інтервалі (0; ) лежить тільки одна з них: , причому . Оскільки S/(x)>0, якщо х є (0; ), і S/(x) <0, якщо х є (;), то в точці функція S(x) набуває найбільшого значення. Отже, з усіх рівнобедрених трапецій з трьома сторонами однакової довжини найбільшу площу має та, в якої кут при основі дорівнює 600.
Задача 8. З квадратного листа жерсті із стороною а треба виготовити відкриту зверху коробку, вирізавши по кутах квадратики і загнувши утворені краї. Якою повинна бути сторона основи коробки, щоб її об’єм був максимальним?
Розв’язання.
Позначимо через х довжину сторони коробки. Тоді довжини сторін вирізаних квадратиків дорівнюють , а об’єм коробки дорівнює .
Зі змістом задачі число х задовольняє нерівність 0<x<a, тобто належить інтервалу (0, а). Отже, задача не звелась до знаходження найбільшого значення функції на інтервалі (0; а).
Знаходимо критичні точки функції:
,
тобто х = 0 або х = .
А через те, що V(o)=0 i V(a)=0, то найбільшою на відрізку значення функція V набуває, коли х = , тобто
Найбільшого значення функція досягає всередині відрізка [0; а], отже, і всередині інтервалу (0; а). Таким чином, сторона основи коробки повинна бути .
Задача 9. Площа поверхні сфери рівна 27. Яка висота циліндра найбільшого об’єму, вписаного в цю сферу?
Розв’язання.
Нехай циліндр утворений обертанням прямокутника АВСD навколо діаметра MN. Нехай AD = x, виразимо об’єм V циліндра як функцію від х. Одержали , тобто , звідки . З АОВ отримаємо АВ2=ОВ2-ОА2, тобто АВ2=. Згідно з формулою , де R – радіус циліндра, Н – його висота, запишемо об’єм циліндра
.
За умовою задачі 0<x<2OB, тобто . Отримаємо:
, якщо 9-х2= 0.
Звідси знаходимо х = 3 (оскільки х > 0). Якщо 0<x<3, то , а якщо
, то . Значить, х=3 – точка максимума. Оскільки функція визначена для будь-якого х і на всій числовій прямій має одну критичну точку. Отже, при х = 3 функція досягає найбільшого значення.
Надалі розглянемо кілька суто геометричних прийомів розв’язування екстремальних задач. Один із прийомів – симетрія. Цей прийом дуже часто використовується при знаходженні найкоротших ламаних з вершинами на заданих прямих і не тільки.
Задача 9.1. Довести, що серед всіх трикутників, вписаних в даний гострокутний трикутник, найменший периметр має трикутник з вершинами в основі висот даного.
Розв’язання.
Візьмемо довільну точку D на стороні гострокутного трикутника АВС. Знайдемо на АВ і АС точки F i E, так, щоб при заданому D периметр DEF був найменшим. Нехай D1 i D2 –