одержимо
.
Але комплексні вирази рівні між собою тоді і тільки тоді, коли рівні дійсні та уявні частини, що і було потрібно довести.
Теорема (про загальний розв’язок лінійної неоднорідної системи). Загальний розв’язок лінійної неоднорідної системи складається із суми загального розв’язку однорідної системи і якого-небудь частинного розв’язку неоднорідної системи.
Доведення. Нехай - загальний розв’язок однорідної системи і - частинний розв’язок неоднорідної. Тоді, як випливає з властивості 1, їхня сума буде розв’язком неоднорідної системи.
Покажемо, що цей розв’язок загальний, тобто підбором сталих , можна розв’язати довільну задачу Коші
.
Оскільки - загальний розв’язок однорідного рівняння, то вектори лінійно незалежні і система алгебраїчних рівнянь
має єдине розв’язок ,. І лінійна комбінація с отриманими сталими , є розв’язком поставленої задачі Коші.
2. Задача Коші
Нехай - фундаментальна система, нормована при тобто , де - одинична матриця. Загальний розв’язок однорідної системи має вигляд
.
Вважаючи невідомою вектором-функцією і повторюючи викладення методу варіації довільної постійний, одержимо
.
Звідси
.
Проінтегруємо отриманий вираз
.
Тут - вектор із сталих, що отриманий при інтегруванні системи. Підставивши у вихідний вираз, одержимо:
Якщо - фундаментальна матриця, нормована при , то . Звідси
Підставивши початкові значення і з огляду на те, що , одержимо
-
формулу Коші, загального розв’язку неоднорідного рівняння. Частинний розв’язок неоднорідного рівняння, що задовольняє нульовій початковій умові, має вид
.
Якщо система з сталою матрицею , то
.
І формула Коші має вигляд
.
Використана література:
Хусаінов П. Диференційні рівняння. – К., 1999.
Дубовик В.П. Вища математика. Посібник. – К., 2001.