У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


Rj={Aj1,Aj2,...,Ajk} знаходиться у відношенні Ri < Rj, якщо кожен клас Ait, t=1,2,...,k розбиття Ri міститься в деякому класі Ajt розбиття Rj. Наприклад, для M ={1,2,3,4,5} розбиття R'={{1,2},{3},{4,5}} менше розбиття R''={{1,2,3},{4,5}} і менше розбиття R'''={{1,2},{3,4,5}}, а розбиття R'' і R''' непорівнювані.

Мінімальним елементом частково впорядкованої множини P є розбиття { {a} | aM}, а максимальним елементом - {M}. Тоді sup{Ri,Rj} = Rk, де Rk - розбиття, в якому елементи a,bM входять в один клас тоді і тільки тоді, коли існує такий cM, що кожна з пар елементів a і c та c і b належить одному класу або в Ri, або в Rj ; inf{Ri,Rj} = Rl, де Rl - розбиття, в якому елементи a,bM належать одному класу тоді і тільки тоді, коли вони належать одному класу і в Ri, і в Rj.

Наприклад,

sup{R'',R'''} = {{1,2,3,4,5}}, sup{R',R''} = {{1,2,3},{4, 5}},

inf{R'',R'''} = {{1,2},{3},{4,5}}, inf{R',R''} = {{1,2},{3},{4,5}}.

Оскільки за теоремою 1.10 існує взаємно одозначна відповідність між усіма розбиттями даної множини M і всіма відношеннями еквівалентності на M, то множина всіх відношень еквівалентності на M може бути перетворена в решітку.

Скінченну частково впорядковану множину M зручно зображати у вигляді діаграми або структурного графа, вершини якого відповідають елементам множини M. З вершини a проводимо стрілку у вершину b, якщо a b і не існує такого c, що a c і c b. Стрілки (петлі), що відповідають діагональним парам (a,a) не проводимо.

Приклад 1.20. 1. На рис.1.6 зображено діаграми для чотирьох частково впорядкованих множин:

а) множини двійкових кортежів B3;

б) булеана (M) множини M = {a,b,c} з відношенням включення ;

в) множини натуральних чисел C={2,5,7,10,28,70} з відношенням "ділить";

г) множини D={a,b,c,d} з відношенням часткового порядку R={(a,a),(b,b),(c,c), (d,d),(a,c),(b,c),(a,d), (b,d)}.

а) б) в) г)

Рис.1.6.

2. Діаграма будь-якої скінченної лінійно впорядкованої множини M={a1,a2,...,an}, ai ai+1, i=1,2,...,n-1 має вигляд

______________________ ...... __________

a1 a2 a3 an-1 an

Неважко переконатись, що ab, a,bM тоді і тільки тоді, коли в діаграмі частково впорядкованої множини M існує складений зі стрілок шлях, що веде з вершини a у вершину b. Верхня грань для {a,b} - це елемент, в який ведуть шляхи з a і з b. Нижня грань {a,b} - це елемент, з якого існують шляхи і в a, і в b.

Частково впорядкована множина не є решіткою тоді, коли

1) деяка пара елементів не має верхньої або нижньої грані;

2) для деякої пари елементів найменша верхня (або найбільша нижня) грань не існує.

Наприклад, перші дві множини B і (M) з прикладу 1.20 є решітками, тому що для їхніх діаграм не виконується жодна з наведених умов. Множина C не є решіткою, оскільки, наприклад, для пар {2,5}, {5,7}, {7,10} не існують нижні грані, а пари {10, 28} і { 28,70} не мають верхніх граней. Пара елементів {a,b} ({c,d}) множини D має дві верхні (дві нижні) грані c і d (відповідно a і b), однак не має найменшої верхньої (найбільшої нижньої) грані, оскільки елементи c і d (a і b) непорівнювані між собою.

Частково впорядкована множина M називається повною решіткою, якщо для будь-якої непорожньої підмножини AM в множині M існують найменша верхня грань sup A і найбільша нижня грань inf A. Очевидно, що довільна повна решітка є решіткою, але не будь-яка решітка є повною решіткою. Якщо M - повна решітка, то найменша верхня грань усієї множини M (sup M) називається одиницею даної решітки і позначається 1, а найбільша нижня грань множини M (inf M) називається нулем решітки і позначається 0. Вибір цих назв для sup M і inf M пояснюється такими властивостями елементів 1 і 0.

Для довільного елемента aM виконується

sup {1,a} = 1, sup {0,a} = a, a 1,

inf {1,a} = a, inf {0,a} = 0, a 0. (1.10)

Очевидно, що елементи 0 і 1 є відповідно найменшим і найбільшим елементами повної решітки M.

Приклад 1.21. 1. Решітки B, (M) і P з прикладу 1.19 є повними решітками. Одиницями цих решіток будуть відповідно (1,1,1), M і {M}, а нулями - (0,0,0), і { {a}aM }.

2. Множина N натуральних чисел не є повною решіткою, оскільки будь-яка її нескінченна підмножина на має найменшої верхньої грані.

Множина всіх дільників натурального числа n, частково впорядкована за відношенням "ділить", є повною решіткою. Одиницею в такій решітці є число n, а нулем - число 1.

15. Парадокси теорії множин

Слово "парадокс" грецького походження і перекладається українською мовою - несподіваний, дивний. Вживають це слово у відношенні до висловлювання (положення, ідеї), яке суттєво різниться від загальноприйнятого традиційного уявлення з даного приводу. Вживання терміна "парадокс" стосовно до тих суперечностей, які були виявлені різними математиками в теорії множин Г.Кантора, є наївною спробою зменшити їхнє значення і надати їм характеру логічних курйозів, штучних, неприродних конструкцій. Більш точно суть явища передає назва, "антиномії теорії множин", оскільки термін антиномія є синонімом терміна суперечність. Але за традицією, будемо називати сформульовані нижче положення парадоксами.

Парадокс Б.Рассела. Для будь-якої множини M коректним є питання: чи множина M належить собі як окремий елемент, тобто чи є множина M елементом самої себе, чи ні? Наприклад, множина всіх множин є множиною і тому належить сама собі, а множина всіх будинків у місті не є будинком, множина студентів в аудиторії не є студентом.

Отже коректно поставити сформульоване питання і щодо множини всіх множин, які


Сторінки: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16