nl.
а) Х =
б) Х =
в) Х =
г) Х =
д) формула у = n! ставить у відповідність кожному натуральному числу п чис-ло у = n!. Наприклад, якщо n = 3, то у = 3! = 1 * 2 * 3 = 6, якщо n = 5, то у = 5! = 1 2 3 4 5 = 120. Отже, X = Z0 (вважають, що 0! = 1).
Ці приклади показують, що областю існування функції можуть бути досить різноманітні множини: відрізок, кілька або навіть нескінченна кількість відрізків, дискретна множина точок тощо.
Зазначимо, що задача знаходження множини У значень аналітичне заданої функції набагато складніша і пов'язана з задачею про екстремуми функції (гл. 6, п. 6.3).
При графічному способі задання функції у = f (х) відповідність між змінними х і у задається графіком — множиною точок (х; у) площини, прямокутні координати яких задовольняють рівність у = f(x). Залежно від того, яку задано функцію, графік її може скла-датись з однієї суцільної лінії, кількох ліній, дискретної множини то-чок площини тощо.
Графічним способом задання функції широко користуються при дослідженнях, пов'язаних з використанням таких самописних приладів, як барограф (для запису змін атмосферного тиску), осцилограф (для запису змін електричного струму або напруги), електрокардіо-граф (для запису електричних явищ, пов'язаних з діяльністю серця), термограф (для запису змін температури повітря) тощо. Криві (їх називають відповідно барограма, осцилограма, електрокардіограма, термограма), що їх виписують прилади, задають цілком певну функ-цію, властивості якої характеризують перебіг того чи іншого процесу.
Графіки функцій можна спостерігати на дисплеях комп'ютерів. У математиці графіками широко користуються для геометричного зображення функцій, навіть тоді, коли ці функції задані аналітичне. Якщо функція у = f (х) задана на деякій множині X формулою, то завжди можна вважати, що їй відповідає певний графік, який визначає цю функцію геометричне. А якщо функція задана довільним графі-ком, то чи можна її задати деякою формулою? Це дуже складне запи-тання. Щоб відповісти на нього, потрібно з'ясувати, який зміст має по-няття формули. Якщо функція у = f (х) задана формулою, то ми по-ки що вважаємо, що функція у утворюється за допомогою скінченного числа таких операцій над х, як додавання, віднімання, множення, ді-лення, добування кореня, логарифмування, взяття sin, агсsіn тощо. Математичний аналіз дає змогу значно розширити поняття формули. Зокрема, формулою вважається також і нескінченний ряд, членами якого є ті чи інші функції, тобто допускається нескінченне число опе-рацій над цими функціями. За допомогою таких формул більшість кривих, що зустрічаються на практиці, можна задати аналітичне (гл. 9)..
Приклади
1. Графіком функції у = 2 n - 3 n N є нескінченна множина ізольованих точок, які лежать на прямій у = 2х — 3.
2. Графіком функції у = |х| є сукупність бісектрис першого і другого коорди-натних кутів.
3. Графіком функції
що задана різними аналітичними виразами на різних частинах області зміни х, є сукупність параболи і прямої. Стрілка на графіку означає, що точка М (2, 2) не належить прямій.
4. Функція
(читається «сигнум ікс») визначена на всій числовій осі і набуває трьох значень:—
1; 0; 1; Х = (—; + ), Y = {—1, 0, 1).
5. Функція у = визначена при х0 і набуває двох значень:
-1; 1; Х = (-; 0) U (0; +); Y = {—1, 1).
Зауважимо, що в прямокутній системі координат Оху функцію задає лише така крива 12, яку кожна пряма, що проходить через точку хX паралельно осі Оу, перетинає лише в одній точ-ці. Область визначення цієї функції — відрізок [а; b], який є проек-цією кривої на вісь Ох. Щоб знайти значення функції у0 = f(х0), що відповідає значенню аргументу х0, потрібно через точку х0 [а; b] провести перпендикуляр до осі Ох. Довжина цього перпендикуля-ра від осі Ох до точки М0 (х0; у0) перетину з кривою, взята з належ-ним знаком, і є значенням функції в точці х0, тобто у0 = f(х0). Кри-ва 11 не задає функцію.
Табличний спосіб задання функції у = f(x) полягає в тому, що відповідність між змінними х та у задається у вигляді таблиці.
Табличний спосіб досить часто використовується при проведенні експериментів, коли задають певну сукупність х1, х2, ...,хn значень аргументу і дослідним шляхом знаходять відповідні значення функції: y1, у2, ..., уп.
Якщо функція задана аналітичне, то для неї можна побудувати таблицю, тобто табулювати функцію. Табулюються, як правило, функ-ції, які виражаються складною формулою, але часто зустрічаються в практиці. Такими є, наприклад, таблиці логарифмів, тригонометричні
таблиці тощо. І тут, як і при графічному заданні функції, виникає обернене запитання: чи завжди можна від табличного задання функ-ції перейти до аналітичного, тобто чи можна функцію, задану таб-лицею, задати формулою? Щоб відповісти на нього, зауважимо, що таблиця дає не всі значення функції. Проміжні її значення, які не вхо-дять у задану таблицю, можна знайти наближено за допомогою так званої операції інтерполювання функції. Тому в загальному випад-ку знайти точний аналітичний вираз функції за її таблицею неможли-во. Проте можна побудувати формулу, причому не одну, яка для зна-чень xі, що є в таблиці, буде давати відповідні значення уі, функції. Такі формули називаються інтерполяційними.
Останнім часом табличний спосіб широко застосовується у зв'язку з використанням електронно-обчислювальних машин (ЕОМ), тому що вихідну інформацію ЕОМ видає у вигляді числових масивів (таб-лиць). У зв'язну з цим все більше поширюється і стає одним з