для неперервних функцій, а вони мають первісну. Щоб не було непорозумінь, корисно привчати учнів перед формальним інтегруванням встановлювати, чи неперервна задана (під інтегралом) функція. З цією метою корисно розглянути наступну задачу:
17. Обчислюючи і , учень знайшов, що .
Чи правильні ці рівності? Якщо ні, то в чому заключається помилка?
Аналіз помилки корисно зв’язувати з геометричними ілюстраціями і переконатися, що в точці функція невизначена. Звідси, на проміжку функція не є неперервною.
Дальше, час від часу, корисно пропонувати поряд із інтегралами від неперервних функцій і такі задачі, обчислення інтеграла в яких недопустиме через розрив функції на відрізку інтегрування, а також наступні задачі.
18. Чи можна обчислити ;
19*. При яких значеннях границі інтегрування існують наступні інтеграли:
а) ;
б) ?
20*. Обчисліть:
а) ;
б) ,
якщо це можливо.
В к а з і в к а. В задачі 18 підінтегральна функція має розрив в точці . В задачі 19 (а) границі інтегрування і мають бути або обидві від’ємними, або обидві додатніми. Інтеграл в задачі 19 (б) є зміст обчислювати тільки при . В задачі 20 (б) підінтегральна функція на відрізку інтегрування не визначена.
Запропоновані задачі, без сумніву, будуть допомагати свідомомому засвоєнню поняття первісної та інтеграла. Частина з них може бути розв’язаною на уроці, деякі, помічені зірочками, краще пропонувати на позакласних або факультативних заняттях.