можна сказати, що вона однаково розташована відносно своїх точок? Адже такою ж властивістю володіє й коло. А що таке довжина? ширина? Хіба ці поняття теж не вимагають означень?
Особливо над цими питаннями математики стали замислюватися на межі XIX і XX століть. Глибокий аналіз Евклідової геометрії показав, що не такою вже і стрункою є ця древня споруда. Недоліки в її конструкції містяться у фундаменті. Почалася кропітка робота, спрямована на усунення цих недоліків.
То як же виглядають початки геометрії у сучасному викладі? Візьмемо книгу німецького математика Давида Гильберта ”Основи геометрії”:
“Ми мислимо три різні системи речей: речі першої системи ми називаємо точками, речі другої системи ми називаємо прямими, речі третьої системи ми називаємо площинами. Ми мислимо точки, прямі й площини у визначених співвідношеннях і позначаємо ці співвідношення різними словами, а саме: належати, між, конгруентний (тобто такі, що суміщаються при накладанні), паралельний, неперервний”.
Як бачимо, Гильберт і не збирається означувати основні об’єкти геометрії - точку, пряму, площину. Ці поняття вважаються основними, неозначуваними.
1.4 Як виникають математичні поняття?
“Не можна бути математиком, не будучи в той же час і поетом у душі”,-говорив німецький математик Карл Вейерштрас.
Якщо сучасна геометрія відмовляється розкривати джерела своїх понять, якщо нам ніяк не вдається виявити їх у строгих математичних термінах, то, можливо, нам допоможуть у цьому поетичні образи?
“Зірки мов іскорки горять”. “Струнка смерічка наче свічка”. “Мов струни стовбури високих сосен”. “Рівнина - як озера гладь ”. “Місяця розірваний обруч”.
Поетичний дар, яким наділена людина від природи, спонукає її помічати подібність у різному. Підмічаючи часто одну і ту ж властивість у різних об’єктах, людина усвідомлює цю властивість і дає їй ім'я.
Стовбур смереки чи сосни, натягнута струна або свічка прямі. У цьому твердженні уже явно виражене поняття прямої. Нагадуючи про стовбур дерева, натягнуту струну чи свічку, це поняття в той же час уже відділене від них, існує саме по собі в нашій свідомості.
Так з'являлися абстрактні геометричні поняття.
І чим наполегливіше шукала людина прості, але характерні, деякі, але істотні властивості предметів, чим сміливіше відкидала вона при узагальненні риси неістотні, другорядні і випадкові, тим змістовнішим і водночас більш виразним ставало відповідне абстрактне поняття, чи то площина чи пряма, точка чи коло.
1.5 Звідки беруться аксіоми?
Людина - не тільки споглядач і поет. Людина - насамперед трудівник.
У своїй практичній діяльності, усвідомлюючи властивості реальних предметів і їхні взаємозв'язки, людина установлювала властивості створених нею геометричних понять і відношення між ними.
Стародавня легенда розповідає, як зародилася наука геометрія. Було це в Древньому Єгипті. Величезна ріка тече через усю цю місцевість - Ніл. Розливаючись із кожною весною, Ніл затопляв поля і знищував межі, що розділяли земельні ділянки. Межі щоразу доводилося відновлювати заново. З року в рік, із століття в століття удосконалювалися прийоми землемірства. Якщо вимовити це слово на древньогрецькій мові, ми впізнаємо в ньому назву науки, про яку йде мова: геометрія.
Натягуючи шнурок між двома кілками, древні землеміри не раз мали можливість переконатися, що ця нескладна операція завжди призводить до того самого результату. Багаторазово повторений досвід дозволив зробити висновок: через дві точки можна провести пряму, і притому тільки одну.
Так народжувалися аксіоми.
І чим наполегливіше відкривала людина стійкі і закономірні зв'язки між предметами реального світу, чим глибше вона осмислювала їхньому логіку, чим частіше виявляла вона при найрізноманітніших обставинах те або інше співвідношення, чим успішніше використовувала його у своїх міркуваннях і діях, тим надійніше підтверджувала своє значення відповідна аксіома: через будь-які дві точки можна тільки одну провести пряму.
Аксіом ставало все більше. Вони складалися в єдину систему. Математики піклувалися про те, щоб така система була повною, тобто щоб із неї можна було вивести будь-яку з відомих геометричних теорем. І ще про те, щоб вона була несуперечливою, тобто щоб із неї не можна було вивести суперечливих тверджень.
Узяті разом, ці аксіоми описують усі властивості основних геометричних об'єктів, усі співвідношення між ними, що використовуються при виведенні геометричних теорем. Тому і не даються означення основних геометричних понять - точки, прямої, площини. Їхні означення містяться в аксіомах геометрії.
1.6 Моделювання геометричних ситуацій
Усі геометричні поняття: точка, пряма, площина та інші – об'єкти ідеальні. Їх узагалі немає в природі. Вони існують лише у нашій свідомості. Але це не заважає нам, зображати їх на папері, ілюструвати з допомогою кульок, паличок, кусочків цупкого паперу чи предметів навколишньої обстановки. Такі прості засоби допомагають нам відкривати нові властивості, доводити нові теореми тому, що для них виконуються ті самі аксіоми, що і для абстрактних точок, прямих і площин.
Через дві точки можна провести пряму, і притому тільки одну, говорить аксіома. Через дві точки, зображені у зошиті, проходить лише одна тонка лінія, проведена під лінійку. Дві бусинки можна з'єднати паличкою, і притому тільки однією.
Виконуючи ці дії, ми, як сказали б учені, моделюємо абстрактне поняття прямої. Так само моделював його древній землемір, натягуючи шнурок між кілками, так само моделює його сьогодні геодезист променем лазера.
Подібних моделей може бути як завгодно багато. І якщо для них виконуються одні і ті ж геометричні аксіоми, то для них можна застосовувати і всі наслідки з аксіом.
У цьому полягає міць математики, її велике прикладне значення. Спостерігаючи різні процеси і явища, учений намагається виділити найістотніші їх риси, найглибинніші їхні закономірності. Часто вони виявляються загальними для найширшого кола різноманітних