У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


складні рівняння ще входять компоненти електромагнітного поля, які визначаються рівняннями максвела:

(1.24)

Тут – електрична і магнітна сталі, – об’ємна густина заряду, – вектор густини струму, - знак транспонування.

А (1.24) – це рівняння в частинних похідних з складними граничними умовами. Задача заключається не тільки в моделюванні рівнянь руху, а й в розрахунках оптимальних систем.

1.6. Використання диференціальних рівнянь в біології і математичних обчисленнях.

Біологія. Необхідно знайти залежність площі молодого листка, що має форму круга, від часу . Відомо, що швидкість зміни площі в момент пропорцієн площі листка, довжини його ободу та косинусу кута між падаючим на листок сонячним променем і верікаллю листка. Маємо модель:

де (1.25)

– const, , – коефіцієнт пропорційності; розв’язуючи рівняння (1.25) ми отримаємо таку залежність:

(1.26)

Математика. Обчислити невласний інтеграл

(1.27)

залежний від параметра .

Знайдемо похідну:

Отримали диференціальне рівняння

(1.28)

При цьому відомо:

(1.29)

Розв’язуючи задачу Коші (1.28),(1.29), отримаємо:

(1.30)

1.7. Побудова диференціальнихрівнянь з заданими параметричними сімействами кривих.

Припустимо, шо задано однопараметричне сімейство кривих:

(1.31)

Задача полягає в тому, щоб знайти диференціальне рівняння, розв’язками якого являються криві (1.31). Вважаючи, що функція (1.31) має повну похідну за x запишемо:

(1.32)

Тоді з (1.31) та (1.32) як з системи рівнянь, вилучаємо сталу і отримаємо шукане диференціальне рівняння першого порядку.

Якщо ж задано - параметричне сімейство кривих:

(1.33)

то до (1.33) додаються дані співвідношення:

(1.34)

з(1.33) та (1.34), як з системи рівнянь, кількість яких , вилучаються сталі і отримане таким чином співвідношення між

(1.35)

і буде шуканим диференціальним рівняння -го порядку.

В (1.32) та (1.34) означають частинні похідні відповідних порядків за вказаними змінними. При цьому припускаємо, що похідні існують, тобто функції (1.32) та (1.34) являються диференційовними відповідну кількість разів.

Аналогічно поступають і при складанні систем рівнянь.

Приклад 1.1. Знайти диференціальне рівняння першого порядку, розв’язками якого буде однопараметричне сімейство

(1.36)

Розв’язання. Продиференйіюємо за праву частину нашого співвідношення в припущенні, що .

(1.37)

Враховуючи (1.36) рівність (1.37) перепишемо таким чином:

(1.38)

З (1.38) знаходимо

і підставивши в (1.36) отримаємо шукане диференціальне рівняння

(1.39)

Приклад 1.2. Знайти диференціальне рівняння другого порядку, розв’язками якого буде двопараметричне сімейство

(1.40)

Розв’язання. Згідно описаного вище складаємо систему рівнянь:

(1.41)

З якої вилучивши і знаходимо шукане диференціальне рівняння:

(1.42).


Сторінки: 1 2