У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


одиницю відображає оптимальний баланс між безробіттям та інфляцією. Рівняння (2.1.1) базується на припущенні, що при оптимальному рівні зайнятості пропозиція грошей постійна і рівна , в противному випадку пропорційне перевищення над є зростаючою функцією пропорційного перевищення над . Тепер замість рівняння (1.10) використовується рівняння (2.1.1), так, що модель включає рівняння (1.1) — (1.9) і (2.1.1).

З (1.7), (1.8) і (2.1.1) отримаємо |

(2.1.2)

Тоді з (1.12) та (2.1.2) отримаємо |

(2.1.3)

що разом з (1.4) та (1.5) дає |

(2.1.4)

Одночасно також маємо |

(2.1.5)

(2.1.6)

що аналогічно відповідно (1.16) та (1.17).

Траекторія зміни змінних та визначається початковими значеннями змінних і системою рівнянь (2.1.4) — (2.1.6). Частинний розв’язок цієї системи має вигляд |

(2.1.7)

(2.1.8)

(2.1.9)

де |

(2.1.10)

(2.1.11)

(2.1.12)

Із (1.4), (2.1.8), (2.1.9) та (2.1.12) випливає,що рівноважна траекторія росту зайнятості визначається рівнянням |

(2.1.13)

де

Таким чином, ця траекторія не пов’язана з оптимальною. Дійсно, порівняння (1.28) з (2.1.13) показує, що рівноважна траекторія росту зайнятості співпадає з траекторією, що відповідає постійній пропозиції грошей. Це неприйнятний наслідок політики, що описується рівнянням (2.1.1). Розглянемо тепер вплив цієї політики на стійкість системи.

З рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13) маємо |

(2.1.14)

(2.1.15)

(2.1.16)

де

Точні траекторії зміни змінних визначаються початковими значеннями цих змінних і системою рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13), а наближені траекторії – тими ж початковими значеннями і системою лінійних рівнянь, які включають (2.1.14), (2.1.15) та |

(2.1.17)

Характеристичними коренями матриці коефіцієнтів останньої системи є корені рівняння

, | (2.1.18)

де

Зауважимо, що , , і при умові, що частинна похідна . Отже, хоч політика задана рівнянням (2.1.1) не впливає на рівноважну траекторію зайнятості (на відміну від політики, що передбачає постійну пропозицію грошей), вона може справляти стабілізуючу дію.

Припустимо, наприклад, що ; ; ; ; ; ; ; ; .При цих умовах і при корені рівняння (2.1.18) рівні ; , а при ці корені рівні ; ; . Тобто у даному випадку вплив грошової політики приводить до поступової ліквідації ціклу і більш швидкої збіжності до довгострокового тренду.

Розглянемо тепер політику, яка визначається рівнянням |

(2.1.19)

З цього рівняння випливає, що при оптимальному рівні зайнятості пропозиція грошей постійна. В протилежному випадку пропорційний темп росту пропозиції грошей, є зростаючою функцією пропорціонального перевищення над . Тепер модель описується рівняннями (1.1), (1.9) та (2.1.19).

З (1.7), (1.8) та (1.12) маємо |

(2.1.20)

що у сукупності з (1.4) та (1.5) дає |

(2.1.21)

Далі, з (1.4) та (1.19) маємо |

(2.1.22)

що разом з (2.1.5) дає |

(2.1.23)

Траекторії зміни та визначаються початковими значеннями змінних та системою рівнянь, що включає (2.1.6), (2.1.21) та (2.1.23). (Власні траекторії та можна отримати, використовуючи (2.1.5) та (2.1.22).) Частинний розв’язок системи має вигляд |

(2.1.24)

(2.1.25)

(2.1.26)

де |

(2.1.27)

(2.1.28)

(2.1.29)

P (1.4), (2.1.25), (2.1.26), (2.1.28) та (2.1.29) випливає, що рівноважна траекторі росту зайнятості визначається рівнянням

, | (2.1.30)

де

Крім того маємо |

(2.1.31)

Зміст (2.1.31) полягає в тому, що рівноважний пропорційний рівень зайнятості , при політиці, заданій рівнянням (2.1.19) є зваженим середнім геометричним оптимального пропорційного рівня зайнятості та рівноважного пропорційного рівня зайнятості при умові постійної пропозиції грошей. [див. (1.28) та (2.1.13)]. Різниця між та тим менша, чим більше і прямує до нуля коли прямує до нескінченості. таким Чином політика (2.1.19) веде до зменшення, але не усуває повністю відмінності між рівноважним і оптимальним пропорційними рівнями зайнатості. В цьому відношенні вона більш ефективна, ніж політика (2.1.1), хоча і її не можна вважати цілко задовільною.

Слід зауважити, що при політиці (2.1.12) пропозиція грошей продовжує змінюватись, поки рівень зайнятості не досягає оптимуму. Тому, досить несподівано, що ця політика, не забазпечує рівності . Це пояснюється тим, що у встановленому стані системи ставка заробітної плати змінюється зі швидкістю, яка цілком компенсує вплив на пропорційний рівень зайнятості зміни пропозиції грошей. Пропорційні темпи росту ставки заробітної плати та пропозиції грошей в усталеному стані системи легко отримати з рівняння (2.1.5), (2.1.19), (2.1.25) та (2.1.30). Вони визначаються виразами |

(2.1.32)

(2.1.33)

З (2.1.6), (2.1.21), (2.1.23) та (2.1.27) — (2.1.29) маємо |

(2.1.34)

(2.1.35)

(2.1.36)

де

Точні траекторії визначаються початковими значенням цих величін та рівняннями (2.1.32) — (2.1.33), а наближені — тими ж початковими значеннями та системою лінійних рівнянь (2.1.34), (2.1.35) та |

(2.1.37)

Характеристичними коренями матриці коефіцієнтів останньої системи є корені рівняння

, | (2.1.18)

де

Зауважимо, що не залежить від і що навіть при умові, коли , похідна може бути від’ємною. Цей результат демонструє, що політика (2.1.19) менш ефективна з точки зору стабілізації системи, ніж політика (2.1.1).

Припустимо, наприклад, що ; ; ; ; ; ; ; ; .При цих умовах і при корені рівняння (2.1.18) рівні ; , а при ці корені рівні ; . Тобто у даному випадку грошова політика не справляє особливого демпфуючого впливу на циклічний характер розвитку економіки. Її основний ефект полягає в зменшенні різниці між рівноважним та оптимальним пропорційними рівнями зайнятості та в зменшенні тривалості періода циклу.

Розглянемо тепер політику, яка визначається рівнянням |

(2.1.19)

З цього рівняння випливає, що пропорційний темп росту пропозиції грошей зменшується, залишається постійним або зростає, в залежності від того, більший, рівний або менший оптимального фактичний рівень зайнятості. Вцьому випадку модельописується рівняннями (1.1) — (1.9) та (2.1.39).

Введемо нову змінну , яка визначається співвідношенням |

(2.1.40)

Тоді з (2.1.5) та (2.1.40) маємо |

(2.1.41)

З (1.4), (2.1.29) та (2.1.40) отримаємо |

(2.1.42)

Траекторії зміни змінних та визначаються початковими значеннями цих змінних та системою рівнянь, що включає (2.1.6), (2.1.21), (2.1.41) та (2.1.42). Ця система має частинний розв’язок: |

(2.1.43)

(2.1.44)

(2.1.45)

(2.1.46)

де |

(2.1.47)

(2.1.48)

(2.1.49)

(2.1.50)

З (1.4), (2.1.44), (2.1.45), (2.1.48) та (2.1.49) випливає,


Сторінки: 1 2 3 4 5 6 7