У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


одиницею поглиненої дози випромінювання є рад. Один рад відповідає поглиненій енергії в 10-5 Дж на 1кг будь-якої речовини: 1 рад = 10-5 Дж/кг = 0,01 Гр. Відповідно до вищевикладеного,
де Dпогл. - поглинена доза випромінювання, ДE - енергія, поглинена речовиною, що опромінюється, Дm - маса речовини. Величина поглиненої дози випромінювання залежить від властивостей випромінювання і поглинаючого середовища. Для характеристики дози з точки зору іонізації застосовується так звана експозиційна доза рентгенівського й г - випромінювання. Експозиційна доза виражає енергію випромінювання, перетворену в кінетичну енергію заряджених частинок в одиниці маси атмосферного повітря. За одиницю експозиційної дози рентгенівського й г - випромінювань приймається кулон на кілограм - 1 Кл/кг. Кулон на кілограм це така експозиційна доза рентгенівського й г - випромінювань, при якій пов’язана з цим випромінюванням корпускулярна емісія на кілограм сухого повітря при нормальних умовах (при t0 = 0°C і тиску 760 мм рт. ст.) створює у повітрі іони, які мають заряд в один кулон електрики кожного знака. Позасистемною одиницею експозиційної дози рентгенівського й г - випромінювань є рентген. Рентген – одиниця експозиційної дози фотонного випромінювання, при проходженні якого крізь 0,001293 г повітря в результаті завершення всіх іонізаційних процесів в повітрі створюються іони, що несуть заряд 3,33·10-10 Кл (одну електростатичну одиницю кількості електрики) кожного знака. Маса 0,001293 г - це маса 1 см3 атмосферного сухого повітря за нормальних умов: при температурі 0оС та тиску 1,013.105 Па (760 мм рт.ст.). Експозиційна доза може також вимірюватись в долях рентгена - мілірентгенах - мР або в мікрорентгенах - мкР (1 Р = 103 мР = 106 мкР). Величину експозиційної дози можна оцінити за допомогою формули.
де Dексп. - експозиційна доза рентгенівського й г - випромінювань; ДQ - заряд, що виникає у результаті іонізації повітря в елементі об’єму; Дm - маса повітря, що опромінюється, у цьому об’ємі. Експозиційній дозі 1 Р відповідає величина в системі СІ (Дж/кг)
Якщо врахувати, що середня енергія утворення іонів у повітрі Е = 34 еВ і n=2,08.109 1/см3, то одиниці експозиційної дози "рентгену" буде відповідати:

Dексп. = n · Е

2.08 ·109 · 34 ·10-6 = 7.06 ·104 МеВ/см3 . При перерахуванні на один грам повітря "рентгену" буде відповідати: Dексп.= n Е = 1.61 1012 34 10-6 = 5.47 107 МеВ/г. Отже, для одержання експозиційної дози в один рентген потрібно, щоб енергія, витрачена на іонізацію в одному кубічному сантиметрі повітря (або грамі), відповідно дорівнювала

1 Р = 7.06 104 МеВ/см3 = 5.47 ·107 МеВ/г .

Співвідношення між поглинутою дозою випромінювання Dпогл. , вираженою в радах (1рад = 10-5 Дж/г), і експозиційною дозою рентгенівського й г - випромінювань Dексп. , вираженою в рентгенах (1Р = 87.7 107 Дж/г), для повітря має вигляд:

Dексп. = 0.877 Dпогл. .

Із зіставлення доз випливає, що в умовах електронної рівноваги при експозиційній дозі, рівній одному рентгену, поглинута доза дорівнює 0.877 рад, або 0,00877 Гр. (1 рад = 0,01 Гр) 3.6.2 Особливості взаємодії різних видів випромінювання з біологічними об'єктами За останні десятиліття людина створила кілька сотень штучних радіонуклідів і навчилася використовувати енергію атома для різноманітних цілей: у медицині, для створення ядерної зброї, для виробництва електроенергії, виявлення пожеж, для пошуку корисних копалин, розвитку перспективних новітніх радіаційних технологій. Усе це призводить до збільшення дози опромінення як окремих людей, так і населення Землі вцілому. У цьому зв'язку, впливу іонізуючих випромінювань на живі організми присвячені численні дослідження, результати яких показані в численних статтях, працях симпозіумів, підручниках, методичних й навчальних посібниках. Різні види випромінювань супроводжуються вивільненням різної кількості енергії і мають різну проникну здатністю, тому вони здійснюють неоднакові впливи на тканини живого організму. Альфа - випромінювання, яке складається з нейтронів і протонів, практично не проникає через зовнішній шар шкіри, утворений відмерлими клітинками. Тому воно не створює небезпеки доти, поки радіоактивні речовини, що випромінюють a - частинки, не потрапляють всередину організму через відкриту рану, з їжею або з повітрям; тоді вони стають надзвичайно небезпечними. Бета-випромінювання має більшу проникну здатність: воно проходить у тканини організму на глибину один - два сантиметри. Проникна здатність гамма - випромінювання, яке поширюється зі швидкістю світла, дуже велика: його може затримати лише товста свинцева або бетонна плита. Ушкоджень, викликаних у живому організмі випромінюванням, буде тим більше, чим більше енергії воно передає тканинам: кількість переданої організму енергії називається дозою. Дозу випромінювання організм може одержати від будь-якого джерела випромінювання незалежно від того, знаходяться радіонукліди поза організмом або всередині його (у результаті попадання з їжею, водою або повітрям). У цьому зв'язку розрізняють зовнішнє і внутрішнє опромінення. Кількість енергії випромінювання, одержуваної одиницею маси тіла, яке опромінюється, (тканини організму), називається поглиненою дозою. Ця величина також як і при опроміненні будь-якої речовини виміряється в системі СІ в Греях (1Гр = 1 Дж/кг) і радах (1 рад = 0.01 Гр). Але ця величина не враховує того, що при однаковій поглиненій дозі альфа - випромінювання небезпечніше ніж бета або гамма-випромінювання. Якщо взяти до уваги цей факт, то дозу варто помножити на зважуючий фактор, який відображує здатність випромінювання даного виду зашкодити тканинам організму. Біологічний ефект випромінювань при хронічному (професійному) опроміненні всього тіла
Сторінки: 1 2 3 4 5 6 7