У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


нестабільність характеристик.

ФОТОДІОДИ

Основним елементом фотодіода (ФД) є p-n-перехід. При освітленні його відбувається генерація електронно-діркових пар. Електричне поле переходу розділяють незрівноважені носії заряду. Струм, утворений цими носіями, збігається за напрямом з оберненим струмом p-n-переходу. p-n-перехід як фотоприймач застосовується в двох режимах – фотодіодному і режимі генерації фото-ЕРС (вентильному) (мал. 1.2). У першому випадку на діод подається обернена напруга і струм через структуру є функцією інтенсивності світла. В другому випадку p-n-перехід сам використовується в якості джерела ЕРС або струму.

Мал. 1.2. Схеми вмикання діода у фотодіодному (а) і фотовентильному (б)

режимах

Фотодіодний режим використання p-n-переходів і інших аналогічних структур має визначені переваги по відношенню до фотовентильного: висока швидкодія, краща стабільність характеристик, великий динамічний діапазон лінійності характеристик, підвищена фоточутливість у довгохвильовій області. Недолік фотодіодного режиму пов'язаний із темновим струмом, що проходить через прилад при оберненому зсуві за відсутності випромінювання. В опорі навантаження створюється напруга зсуву, значення котрої експоненціально залежить від температури. Надлишковий шум і шум, обумовлений температурними коливаннями напруги зсуву, зникають, якщо діод знаходиться при нульовому зсуві. Тому фотовентильний режим може виявитися кращим від фотодіодного. Енергетичні характеристики фотоелементів близькі до лінійного при малих опорах навантаження і є логарифмічними (залежність фотовідповіді від інтенсивності засвітки) при великому навантаженні.

Типова структура фотодіода і його вольт-амперна характеристика (ВАХ) показані на мал. 1.3.

Мал.1.3 ВАХ фотодіода (a) і його структурна схема (б).

Оцінимо розмір фотоструму для простого випадку, коли випромінювання поглинається в n-області і інтенсивність світла постійна по товщині (<< 1). Тут – ширина бази. При оберненому зсуві процес переносу генерованих світлом носіїв заряду не відрізняється від переносу зрівноважених носіїв в n-базі. Для визначення фотоструму можна скористатися формулою для оберненого струму p-n-переходу, яка для випадку pp>>nn має вигляд:

Інас = gSLppn / p.

Це cтрум незрівноважених носіїв заряду, що генеруються з темпом pn/p в шарі бази шириною, рівною довжині дифузії неосновних носіїв (дірок) Lp. За аналогією фотострум

Іф = qS(р / p),

де p – концентрація генерованих світлом носіїв. Оскільки << Lp, то

підставляючи p = pФ, одержуємо:

Іф = qSФ = qcSФ (1.1)

Тут S – площа світлоприйомної поверхні; c = – безрозмірний коефіцієнт, що характеризує частку випромінювання, що поглинається в базі. У фотодіодів на основі p-n-переходу є багато переваг, головним із яких є мала інерційність.

ФОТОТРАНЗИСТОРИ

Біполярний фототранзистор являє собою напівпровідникову структуру, у якій є два p-n-переходи (мал. 1.4). Прилад можна уявити таким що складається із фотодіода і транзистора .Фотодіодом є освітлювана частина переходу база - колектор, транзистором - частина структури, розташована безпосередньо під емітером. Можливі три схеми включення фотодіода як двохполюсника, коли один із виводів залишається вільним: із вільним колектором, із вільним емітером і з вільною базою. Перші дві з цих схем не відрізняються від схеми

вмикання p-n-переходу у фотодіодному режимі.

Мал. 1.4. Включення транзистора з відключеною базою.

Розглянемо роботу транзистора в схемі з загальним емітером (ЗЕ) при відключеній базі за відсутності освітлення (див. мал. 1.4). Оскільки колекторний p-n-перехід включений в оберненому напрямку, уся прикладена напруга падає на ньому і після вмикання струм у ланцюзі дорівнює оберненому струмові окремо взятого колекторного переходу ІКБ0. Цей струм складається з струму дірок із бази в колектор і струму електронів із колектора в базу. Відхід із бази дірок і прихід у неї електронів призводить до утворення негативного заряду в базі. Внаслідок цього потенційний бар'єр емітерного переходу знижується і для компенсації негативного заряду в базу з емітера входять дірки. Позначимо через h21Б коефіцієнт передачі (підсилення) емітерного струму транзистора: h21Б = (Ік / Іе)U=const. Для аналізованого випадку (ЗЕ) h21Б-а частина інжектованих дірок проходить через базу в колектор і в компенсації негативного заряду в базі бере участь тільки (1- h21Б)-а частина діркового струму емітера Іе. З умови електронейтральності струм, що утворює заряд, повинен бути рівний струмові, що його компенсує, тобто Іе (1-h21Б) = ІКБ0. Струм у всіх ділянках послідовного ланцюгу однаковий, тому

І = Іе = Ік і I = ІКБ0/(1- h21Б).

При освітленні бази фотострум збільшує обернений струм колекторного переходу, включеного в оберненому напрямку, тому що фотострум підсумовується з колекторним струмом.

На даний час відомі складні інтегральні мікросхеми з фототранзисторами. Прикладом є складовий транзистор-тверда схема з трьома транзисторами, сполученими за схемою Дарлінгтона, яку можна розглядати як емітерний повторювач. Коефіцієнти підсилення таких приладів можуть досягати h321 , що при достатньо великих струмах складає 105 … 106. У складових фототранзисторах досягаються малі значення границі чутливості. Вони відрізняються високим вхідним опором. Висока фоточутливість, широкий температурний діапазон роботи, простота технології виготовлення і висока надійність фототранзистора обумовлюють його застосування в різноманітних оптоелектронних пристроях. Наприклад, на основі фототранзистора розроблені

оптоелектроні перемикачі, що комутують струми до декількох десятків міліампер із швидкодією приблизно 10-6 с, комутатори аналогових сигналів, що переключають напруги до 1 мВ, смугою пропускання до десятків мегагерц, фотоприйомні матриці з накопиченням і інші пристрої.

Створення кремнієвих фотоприймачів припускає можливість використання технологічних прийомів виготовлення інтегральних схем. Це забезпечує високу ефективність їх застосування в системах мікрофотоелектроніки. Структури деяких кремнієвих фотоприймачів із внутрішнім підсиленням приведені на мал. 1.5.

Мал. 1.5. Планарні структури фотоприймачів з внутрішнім підсиленням:

а - фототранзистор;

б - складовий фототранзистор;

в - фототиристор.

Еквівалентна електрична схема таких приладів може бути зведена до комбінації фотодіода й одного або декількох транзисторів. Якщо коефіцієнт підсилення транзисторної частини еквівалентної схеми складає h21ЕКВ, то струмова чутливість фотоприймача


Сторінки: 1 2 3 4 5 6 7 8