виникає його додаткове (в порівнянні з випадком відсутності польового розігріву) інжекційне підсилення, що може складати декілька порядків. У цьому випадку в умовах інжекційного пробою напівпровідника, коли відбувається різке збільшення фоточутливості, при модуляції примісного світла частота спаду фотоструму обернено пропорційна сталому струмові і істотно залежить від відношення часу життя носіїв.
Поглинання світла інжектованими носіями в p-i-n-структурах також супроводжується інжекційним підсиленням. Падаюче випромінювання за рахунок світлового розігріву носіїв змінює параметри Dn, Dр, n, p, n, p. Підсилення фотоструму при цьому може досягати декількох порядків.
Фотодіоди з інжекційним підсиленням перспективні для створення високоефективних фотоелектричних пристроїв, чутливих практично у всіх областях оптичного спектру. ІФД відрізняються гарними граничними характеристиками. Використання їх можливе як в аналоговому, так і в дискретному режимах.
Кількість матеріалів, у яких спостерігалося інжекційне підсилення, дуже велика. Це, наприклад, германій, компенсований Au, Hg, Сu і ін., кремній що має глибокі рівні Zn, В і ін. Інжекційне підсилення вивчалося в діодах на основі бінарних з'єднань і твердих розчинів. В залежності від ширини забороненої зони напівпровідника і глибини залягання домішок ІФД можуть працювати як при кімнатній, так і при більш низьких температурах.
Значна частина досліджень проведена для ІФД, чутливих у ІЧ області спектру (наприклад, діоди на основі Ge, InSb). Проте виявлені закономірності інжекційного підсилення в основних рисах поширюються і на діоди на основі широкозонних матеріалів, чутливі в більш короткохвильовій області спектру.
Фотоприймачі з інжекційним підсиленням перспективні для використання у функціональних вузлах мікроелектронної апаратури (S-діоди), в пристроях криоелектроніки. Чутливістю інжекційних фотоприймачів можна керувати, використовуючи спільну дію світла і магнітного поля. Фоточутливість можна підвищити, створюючи в базі градієнт концентрації домішок або роблячи ІФД складовою частиною біполярного або одноперехідного транзистора.
ЛАВИННІ ФОТОДІОДИ
Широкий розвиток лазерної техніки викликав необхідність створення швидкодіючих фотодетекторів, що мають високу чутливість до світла з визначеною довжиною хвилі і мають властивості вутрішнього підсилення. Лавинні фотодіоди (ЛФД) широко використовуються для реєстрації і вимірювання в різноманітних системах опрацювання оптичної інформації, виявлення слабких випромінювань, зоряної орієнтації і навігації та ін. Найбільш широко розвинуте застосування ЛФД у волоконно-оптичних лініях зв'язку (ВОЛЗ). ЛФД на основі кремнію мають внутрішнє підсилення до 103, високу чутливість (до 100 А/Вт) на довжині хвилі =0,9 мкм, малу інерційність (~0,5 нс), низький поріг (до 10-15 Вт•Гц-1/2).
Ефекти лавинного множення у напівпровідниках.
У звичайному фотодіоді при поглинанні світла виникають електронно-діркові пари, причому при поглинанні одного фотона утвориться одна електронно-діркова пара. Неосновні носії цих пар або рекомбінують, або протікають через p-n-перехід, породжуючи фотострум. У ЛФД носії, що проходять через p-n-перехід, одержують в сильному полі переходу енергію, достатню для ударної іонізації атомів решітки, і створюють на своєму шляху повторні пари. В результаті струмовий сигнал за рахунок лавинного множення збільшується. Для розвитку лавини необхідне виконання двох умов: товщина збіднілої області p-n-переходу, у якій зосереджене внутрішнє електричне поле, повинна перевищувати довжину вільного пробігу неосновних носіїв заряду; енергія, що накопичується неосновними носіями в області переходу, повинна бути достатньою для збудження валентних електронів напівпровідника, тобто перевищувати поріг ударної іонізації:
qUi = (2...3)Eg. (2.1)
Мал.2.3. Структура ЛФД (а), розподіл електричного поля (б).
При виконанні цих умов створюються повторні пари носіїв, що розділяються полем переходу. Товщина області об'ємного заряду переходу і напруженість внутрішнього електричного поля в ній при даному зсуві залежать від структури діода і від питомого опору напівпровідника (мал. 2.3).Тому напруга лавинного пробою пов'язана з питомим опором матеріалу
Uл.п = b (для Ge b = 85, = 0,62). (2.2 )
Лавинне підсилення фотоструму, що проходить через освітлений p-n-перехід, використовується в ЛФД, що працюють у передпробійному режимі. Залежність коефіцієнта лавинного підсилення від напруги на фотодіоді виражається наближеним співвідношенням Міллера
M = [1 - (U / Uл.п)n]-1, (2.3)
де n – коефіцієнт, що залежить від іонізаційних можливостей електронів і дірок, від довжини хвилі прийнятого випромінювання, а також від матеріалу і конструкції ЛФД. Для кремнієвих фотодіодів n = 3,4 … 4,0, якщо генерація носіїв відбувається в p-області і лавина утвориться в результаті ударної іонізації, виробленої електронами; n = l,2 … 2,0, якщо ударна іонізація провадиться дірками, що генеруються в n-області.
Дуже різка залежність коефіцієнта лавинного множення (мал. 2.3) від прикладеної напруги істотно ускладнює можливість практичного використання ЛФД із високими коефіцієнтами підсилення через дуже жорстку вимогу до точності підтримки на діоді робочої напруги. Сильна залежність напруги лавинного пробою від температури призводить до проблеми термостабілізації. Всі ці чинники обмежують застосування лавинних діодів в апаратурі.
Мал. 2.4. Залежність коефіцієнтів іонізації
електронів і дірок від напруженості поля в
кремнії при кімнатній температурі.
Сильна залежність коефіцієнта від напруженості поля в області множення виникає через дві основних причини: існує позитивний зворотний зв'язок між коефіцієнтом множення і напруженістю поля через наявність двох типів носіїв, що можуть іонізувати; швидкість іонізації експоненціально зростає із ростом напруженості поля.
Розглянемо вплив позитивного зворотного зв'язку. Якщо в область множення інжектується чисто електронний струм, то спочатку первинні електрони генерують повторні пари. Повторні електрони стають невідмінні від первинних. Повторні дірки рухаються в протилежному напрямку і під час прямування генерують нові пари. Коефіцієнт множення Мn для інжектованого електронного струму залежить від іонізуючих можливостей носіїв обох типів
Mn = , (2.4)
де n – швидкість іонізації електронів (середнє іонізуючих співударів електронів на одиницю довжини шляху в напрямку поля); р – швидкість іонізації дірок; d – ширина області збідніння.
Аналогічний вираз має коефіцієнт множення