при натисканні
визначеної клавіші. Вихідний сигнал подається безпосередньо на операційний підсилювач логічної схеми.
Зчитування в дисководі CD-ROM.
При попаданні променя лазерного променя на виступ(на поверхні CD), він відбивається на детектор і проходить через призму, що відхиляє його насвітлочутливий діод. Якщо промінь потрапляє в ямку він розсіюється і лише мала частина випромінювання відбивається обернено і доходить до світлочутливого діода. На діоді світлові імпульси перетворяться в електричні, яскраве випромінювання перетвориться в нулі слабке в одиниці. У такий спосіб ямки сприймаються дисководом як логічні одиниці, а гладка поверхня як логічні нулі.
Цифрові фотоапарати.
„Серцем” будь-якого цифрового фотоапарата є світлочутлива матриця CCD (Charge Coupled Device, тобто ПЗС - прилад із зарядовим зв'язком). Звичайно в камерах використовується 1/3-дюймова CCD, що складається з елементів, що перетворюють світлові хвилі в електричні імпульси (Аналогово-цифровий перетворювач замінює електричні заряди цифровою інформацією). Кількість таких елементів коливається від 350000 у камерах із розрішенням 640х480 до 810000 і більш у камерах 1024х768. Самі матриці не є новим винаходом – вони зародились як устаткування для фізичних експериментів (зокрема у фізиці високих енергій), вони вже давно використовуються у відеокамерах.
Оптичне опрацювання інформації.
Сенсоризація виробничої діяльності, тобто заміна органів чуття людини на датчики, повинна розглядатися в якості третьої промислової революції слідом за першими двома – машинно-енергетичної й інформаційно-комп'ютерної. Потреба в датчиках стрімко росте в зв'язку з бурхливим розвитком автоматизованих систем контролю і керування, впровадженням нових технологічних процесів, переходом до гнучких автоматизованих виробництв. Крім високих метрологічних характеристик датчики повинні мати високу надійність, довговічність, стабільність, малі габарити, масу і енергомісткість, сумісність з мікроелектронними пристроями опрацювання інформації при низкій трудомісткості виготовлення і невеликій вартості. Цим вимогам у максимальному обсязі задовольняють волоконно-оптичні датчики.
Волоконно-оптичні датчики. Перші спроби створення датчиків на основі оптичних волокон можна віднести до середини 1970-х років. Публікації про більш-менш прийнятні розробки й експериментальні зразки подібних датчиків з'явилися в другій половині 1970-х років. Проте рахується, що цей тип датчиків сформувався як один з напрямків техніки тільки на початку 1980-х років. Тоді ж з'явився і термін "волоконно-оптичні датчики" (optical fiber sensors). Таким чином, волоконно-оптичні датчики - дуже молода область техніки.
Фотоелектричні перетворювачі енергії (ФЕП).
Для живлення магістральних систем електропостачання і різноманітного устаткування широко використовуються ФЕП; вони призначені також для підзарядки бортових хімічних АБ (акум. батарей).Крім того, ФЕП знаходять застосування на наземних стаціонарних і пересувних об'єктах, наприклад, в ФЕП электромобілів. За допомогою ФЕП, розміщених на верхній поверхні крил, здійснене живлення приводного електродвигуна гвинта одномісного експериментального літака (США), що перелетів через протоку Ла-Манш.
На даний час найкраща область застосування ФЕП - штучні супутники Землі, орбітальні космічні станції, міжпланетні зонди. Переваги ФЕП: великий термін служби; достатня апаратна надійність; відсутність витрат активної речовини або палива. Недоліки ФЕП: необхідність пристроїв для орієнтації на Сонце; складність механізмів, що розвертають панелі ФЕП після виходу супутника на орбіту; непрацездатність за відсутності освітлення; великі площі опромінюваних поверхонь. Для сучасних ФЕП характерна питома маса 20 - 60 кг/кВт (без врахування механізмів розгортання й автоматів спостереження). До перспективних належать ФЕП, що сполучать сонячні концентратори (параболічні дзеркала) і ФЕП на основі гетероструктури двох різноманітних напівпровідників - арсенідів галію й алюмінію.
ФЕП монтуються на панелях, конструкція яких містить механізми розгортання й орієнтації. Для підвищення ефективності приблизно до 0,3 застосовуються каскадні двo- і трьохшарові виконання ФЕП із прозорими верхнім шаром. ФЕП істотно залежить від оптичних властивостей матеріалів і їх теплорегулюючих захисних покриттів. Коефіцієнти відбивання зменшують технологічним засобом просвітління поверхні що освітлюється (для робочої частини спектру).
Про застосування фотоприймачів можна говорити ще довго і багато. Зрозуміло, що фотоприймачі дуже перспективні прилади. Про це свідчить і той факт, що на даний час важко знайти область науки, техніки чи побуту, де б не застосовувалися фотоприймачі...
Література :
Анісімова І. Д., Вікулін І. М., Заїтов Ф. А., Курмашев Ш. Д. "Напівпровідникові фотоприймачі: ультрафіолетовый, видимий і ближній інфрачервоний діапазон спектру". Москва 1984
Бузанова Л. К., Гліберман А. Я. " Напівпровідникові фотоприймачі". Москва 1976
Ізвозчиков В. А. "Фізичні основи напівпровідникової оптоелектроніки". Ленінград 1981
Іванов В. І., Аксенов А. І., Юшин А. М. " Напівпровідникові оптоелектронні прилади". Москва 1986