У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент





для наближенного обчислення інтегралів частіші, аніж формулами прямокутников і трапецій, бо она – при тих же затратах – дає зазвичай більш точний результат.

Залишковий член формули прямокутників.

Почнемо з формули (4). Припустимо, що у проміжку функція має неперервні похідні перших двох порядків. Тогді, розкладая (по формулі Тейлора) за степенями двочлена аж до його квадрату, будемо мати для всіх значень в

,

де міститься між та і залежить від .

Якщо проінтегрувати цю рівність у проміжку від до , то другий член зправа зникне, бо

(11)

Таким чином, отримаємо

,

так, що залишковий член формули (4), який поновлює її точність має вигляд

.

Позначив через і , відповідно найменьше та найбільше значення неперервної функції у проміжку і коростуючись тим, що другий множник підінтегрального виразу на змінює знака, за узагальненою теоремою про середне можемо написати

,

де міститься між точками и . По відомій властивості неперервної функції, знайдеться в така точка , що , і остаточно

. (12)

Якщо зараз розділити проміжок на рівних частин, то для кожного часткового проміжку будемо мати точную формулу

.

Додавнши ці равенства (при ) почленно отримаємо при звичайних скорочених позначеннях

,

де вираз

і є залишковий член формули прямокутників (1). Так як вираз

також знаходиться між і , то і він представляє одне із значень функції .

Тому остаточно маємо

(13).

При зростанні цей додатковий член спадає приблизно як . Ми кажемо наближено, бо і може змінюватись із зміною . Це маємо памятати і надалі.

Залишковий член формули трапеції.

Займемось тепер формулою (6) при попередніх здогатках відносно функції . Скориставшись інтерполяційною формулою Лагранжа із залишковим членом можемо написати

.

Інтегруя цю формули від до , знайдемо

,

так що залишковий член формули (6) буде

.

Розмірковуючи, як і вище, і користуючись тим, що другий множник підінтегральної функції і тут не змінює знака, знайдемо

.

Нарешті, для випадку ділення проміжку на рівних частин

(14).

Таким є залишковий член формули трапецій (2). При зростанні він також зменьшуеться приблизно як . Ми бачемо, що застосування формули трапецій приводить до похибки того ж порядку, що і для формули прямокутників.

Залишковий член формули Сімпсона.

Звернемося, нарешті до формули (8). Можно було б, аналогічно тому, як це було зроблено тількі що, знов скористатись формулою Лагранжа з залишковим членом і покласти

(15).

Но ми стикаємося тут з таким станом речей, а саме, проінтегрувавши рівність (15), ми не змогли б спростити інтегральний вираз для додаткового члену за допомогою теореми про середне, бо вираз в підінтегральній функції вже змінює знак на проміжку . Тому ми зробимо інакше.

Вираз

,

яким би не було число , в точках , , приймає одні і тіж значення, що і функція . Легко підібрати число так, щоб і похідна цього виразу при співпадала з похідною . Таким чином, при цьому значенні ми маємо не що інше, як інтерполяційний многчлен Эрміта, який відповідаї простим вузлам , і двукратному вузлу . Скориставшись формулою Эрміта з залишковим членом – в пропушенні існування для функції похідних до четвертого порядку включно – отримаємо:

.

Тепер проінтегрувавши цю равність від до ; ми знайдемо, що

так як

.

Якщо припустити похідну неперервною, то, як і в попередніх випадках, залишковий член формули (8)

,

користуючись тим, що другий множник в підінтергальному виразі не змінює знака, можно підставити в такому вигляді Якщо є многочлен не вище третього степеня, то, очевидно, що перетворюється в . Значить, для такого многочлена формула (8) будет точною.:

.

Якщо проміжок розділити на рівних частин, то – для формули Сімпсона (10) – отримаємо залишковий член у вигляді

(16).

При зростанні цей вираз зменьшується приблизно як ; таким чином, формула Симпсона дійсно більш вигідна, ніж попередні дві формули.

Додаток 1.

Текст программи для автоматичного обчислення інтегралів на мові програмування QBASIC:

'Тут описуються сталі

e = 2.718281828459045#

pi = 3.141592653589793#

'Тут задається від під інтегральної функції

DEF fny# (x#) = ex# 2

DEF fncoef# (i#) = (i# MOD 2) * 2 + 2

DEF fnxi# (i#) = a# + i# * h#

DEF fnxis# (i#) = a# + i# * h# / 2

DEF fnxic# (i#) = a# + i# * h# + h# / 2

DEF fnxir# (i#) = a# + i# * h# + h# / 2

CLS

'Тут вводяться межі інтегрування та

'кількість проміжків

INPUT «Введіть нижню межу інтегрування » a#

INPUT «Введіть верхню межу інтегрування » b#

INPUT «Введіть кількість проміжків » n#

'Тут обчислюється крок

h# = (b# - a#) / n#

'Тут обчислюється наближене значення

'інтеграла за методом Сімпсона

integ# = 0

FOR i# = 1 TO ((2 * n#) - 1)

integ# = integ# + fncoef#(i#) * fny#(fnxis#(i#))

NEXT

integ# = integ# + fny#(a#) + fny#(b#)

integ# = integ# * (h# / 6)

PRINT "Simpson = "; integ#

'Тут обчислюється наближене значення

'інтеграла за методом трапецій

integ# = 0

FOR i# = 1 TO (n# - 1)

integ# = integ# + fny#(fnxi#(i#))

NEXT

integ# = integ# + (fny#(a#) + fny#(b#)) / 2

integ# = integ# * h#

PRINT Trapeze = ; integ#

'Тут обчислюється наближене значення

'інтеграла за методом лівих прямокутників

integ# = 0

FOR i# = 0 TO (n# - 1)

integ# = integ# + fny#(fnxi#(i#))

NEXT

integ# = integ# * h#

PRINT "L Rectangle = "; integ#

'Тут обчислюється наближене значення

'інтеграла за методом центральних прямокутників

integ# = 0

FOR i# = 0 TO n#

integ# = integ# + fny#(fnxic#(i#))

NEXT

integ# = integ# * h#

PRINT "C Rectangle = "; integ#

'Тут обчислюється наближене значення

'інтеграла за методом правих прямокутників

integ# = 0

FOR i# = 1 TO n#

integ# =


Сторінки: 1 2 3