полягає в обчисленні значення інтерполяційної функції у вказаній наперед точці z, коли не потрібні проміжкові обчислення коефіцієнтів. Наприклад, метод відомий під назвою -алгоритма розвязує проблему значень для апроксимацій Паде, оскільки він не звязаний з проміжковим обчисленням коефіцієнтів. Описаний нижче модифікований алгоритм Течера-Тьюкі, котрий представляє раціональну апроксимацію в вигляді неперервного дробу, дає вирішення проблеми коефіцієнтів. Якщо потрібно знайти деяку таблицю значень інтерполюючої раціональної функції, то часто вигідніше розвязати спочатку проблему коефіцієнтів і потім обчислювати значення апроксимації в різних точках. Якщо потрібно обчислити одне значення, то іноді зручніше не звертатися до проміжкової задачі обчислення коефіцієнтів. Та на практиці обчислення поліномів і неперервних дробів є доволі швидкою процедурою і тому проблема коефіцієнтів особливо важлива. Відмітимо, що представлення інтерполюючої функції в виді неперервного дробу підвищує ефективність обчислень у порівнянні з використанням поліноміальних відношень, які характерні для апроксимацій Паде.
Важливо і бажано, щоб застосовувані методи коректно працювали у випадку наявності кратних вузлів інтерполяції. Іншою бажаною ознакою чисельних методів раціональної апроксимації є надійність. Не завжди існує раціональна функція певного виду, що задовольняє накладеним умовам інтерполяції. Надійний метод апроксимації має вказати, що задача не має розвязку. Чисельний алгоритм повинен розрізняти задачі що мають і не мають розвязків з врахуванням помилок представлення та округлення. Аналіз цього питання приводить нас до поняття стійкості алгоритму, яке тісно звязане з поняттям надійності. Алгоритм стійкий, якщо малі зміни початкових даних приводять до невеликих змін результату. Хороший алгоритм раціональної інтерполяції повинен бути в змозі виділити ті випадки, коли початкові дані приводять до нестійкого результату.
Відмітимо, що рекурентні методи знаходження інтерполюючої раціональної функції можуть бути звязані з припущенням, що існують проміжкові апроксимації. У випадку існування потрібної інтерполяції надійний алгоритм повинен спрацьовувати навіть у випадку, коли деякі проміжкові апроксимації вироджені або не існують.
Всі ці якісні характеристики хорошого алгоритма навряд чи є повністю сумісними, тому вибір “найкращого” зумовлює наявність тих чи інших компромісів. В будь-якому випадку для практичного застосування нам потрібен алгоритм ефективний, надійний і стійкий.
Розглянемо деякі алгоритми, які є найкращими серед існуючих.
4. Метод обернених різниць Тіле.
Цей метод дає представлення N-точкової апроксимації Паде в виді неперервного дробу. В основному варіанті алгоритму вузли інтерполяції мають бути різні; елементи дробу, що відповідають випадку кратних вузлів, можуть бути отримані по неперервності. Обернені різниці визначаються наступними рівностями:
(8)
і в загальному випадку (для n>1)
Інтерполяційна функція, що відповідає вузлам , представляється в вигляді
(9)
Перевірка. Доведемо спочатку за індукцією наступну тотожність:
(10)
При n=0 відношення (10) має вигляд
це еквівалентно (8). При n>0 перетворимо останній знаменник (10) за допомогою тотожності:
яка після простих перетворень приймає вигляд
еквівалентний (8). Цим тотожність (10) доведена. Покладаючи в (10) послідовно , впевнюємося, що при відсутності випадкових скорочень дробів функція (9) інтерполює потрібні значення в n+1 вузлах і отже є (n+1)-точковою апроксимацією.
Метод апроксимації Тіле більш цікавий з аналітичної точки зору. З обчислювальних позицій наступна схема не менш ефективна ніж будь-яка інша.
5. Модифікований алгоритм Течера-Тьюкі.
Представимо інтерполяційну функцію (9), що відповідає вузлам , в вигляді
(11)
Вихідну множину різних вузлів інтерполяції позначимо порядок використання цих вузлів буде визначений процедурою алгоритму. Для пояснення цієї процедури розглянемо функцію , визначену на інтерполяційній множині , і припустимо, що функція, представлена в вигляді (11), інтерполює у вузлах . Визначимо функції наступними рекурентними відношеннями:
, i = 0, 1, 2, … , n (12)
Частинний випадок відповідає Згідно (12) має виконуватися рівність і з врахуванням цього із (12) випливає, що . В модифікованій формі (13) ці рівності використовуються для обчислення коефіцієнтів , котрі мають бути скінченими і відмінними від нуля. Ці операції складають “нормальну” частину алгоритму, яка називається станом (а). Якщо в деякий момент ( з j = t + 1 ) виявляється, що для всіх де - залишкова інтерполяційна множина, то алгоритм переходить в стан (b); в цьому випадку інтерполяційна функція можливо існує, але вироджена. У всіх інших випадках, що відповідають стану (с) алгоритму, можна впевнено стверджувати, що апроксимація, яка нас цікавить, не існує. Закінчивши побудову сподіваної функції (11), потрібно перевірити, що її знаменник, який знаходиться по формулах (14) , не перетворюється в нуль у вузлах інтерполяції; якщо це не так, то можна показати, що потрібної апроксимації не існує. Відмітимо, що цей алгоритм є надійним в тому розумінні, що якщо апрксимація відповідна початковим даним не існує, то алгоритм відмічає це і дає на виході сигнал про помилку.
Вихідні дані. Визначаємо множину
і значення функції
при .
Ітерація. Ітерації по параметру j=1, 2, … починаються із стану (а) і в невиродженому випадку проводяться до кінця. У випадку виродженості відбувається перехід до стану (b) або (c).
Стан (а). Вибираємо, якщо це можливо, так, що і далі вважаємо
(13)
,
Якщо j=n, вважаємо t=n і переходимо до закінчення; інакше повторюємо ітерацію з j:=j+1.
Якщо вибір з умовою неможливий, то переходимо в стан (b).
Стан (b). Якщо при всіх , то параметру t присвоюється значення j-1 у відповідності з поточним значенням j і відбувається перехід до закінчення для перевірки знаменника.
Стан (с). Перехід в цей стан відбувається тоді і тільки тоді, коли при всіх , але