Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент





Інваріантність

ІНВАРІАНТНІСТЬ

Вище ми розглянули деякі системи координат і їх зв’язок між собою, припускаюся, що простір являється евклідовим. Наскільки евклідова геометрія може бути справедлива для фізичних явищ, можна судити тільки з експериментальних даних. На сьогодні по крайній мірі для класичної механіки в області простору з характерними розмірами L з інтервалу
10-13см<<L<<1028см ми можемо на основі експериментальних даних говорити, що евклідова геометрія може бути застосована до фізичних явищ. Внаслідок цього ми можемо сформулювати деякі висновки:

а) Інваріантність по відношенню до паралельного переносу. Під цим розуміється, що простір однорідний і не змінюється від точки до точки при такому русі. Іншими словами. якщо тіла переміщуються без повороту, то їхні властивості не змінюються.

б) Інваріантність по відношенню до повороту. Із досліду відомо з великою точністю, що простір являється ізотропним, так що всі напрямки еквівалентні і фізичні тіла не змінюються при повороті. На малюнку 1.5 проілюстровані зазначені інваріантності і приведено приклади неінваріантності в гіпотетичному світі, в якому при цих рухах можуть зокрема, змінюватись форма і розміри тіл.

Нижче інваріантності зумовлюють фундаментальні закони збереження.

Залишаючись в такому інваріантному по відношенню до паралельного переносу і повороту світі розглянемо в якому інерціальні системи, які рухаються одна відносно іншої без прискорення (в тому числі і без нормального; тобто ). Заради простоти допустимо, що система В рухається з постійною швидкістю відносно системи А так, що осі х і х’ лежать на одній прямій і напрямлені однаково, і крім того в момент часу початки координат обидвох систем співпадають (мал. 1.6).

Тоді, якщо в момент часу t якась точка М має координати х’, у’, t’ в системі В, то її координати в системі А будуть:

|

(1.25)

Перше рівняння (1.25) не містить t’, бо в класичній механіці вважаються, що час абсолютний, тобто t=t’.

Формули (1.25) носять назву перетворення Галілея для координат. Із перетворення Галілея слідує закон додавання швидкостей і правило перетворень для прискорень:

(1.26) (1.27)

Ми бачимо, що при перетворенні координат завжди можна вказати таки фізичні величини, які залишаються незмінними (інваріантними) при такому перетворенні. Такі величини називаються інваріантами. Наприклад, при перетвореннях Галілея, координати, швидкість (а значить імпульс і кінетична енергія і т.п.) – є варінтні, а прискорення, і час – інваріантні. В цьому контексті розглянемо, що буде творитися із законами збереження імпульсу і енергії як кінетичної так і повної.

Якщо рух деякої системи тіл (частинок) розглядаємо відносно інерціальної системи відліку А, то при переході до іншої інерціальної системи В зміниться кількість руху і кінетична енергія (бо вони є варіантні): якщо через - позначити швидкість в системі А1, а через - в системі В однієї частинки, то

(1.28)

Із співвідношень (1.25) – (1.26) чітко також слідує, що прискорення – інваріант, а також і сили – інваріантні. ???? також слідує з того, що всі механічні сили залежать від відносного розташування тіл або їх відносних швидкостей. І те і інше – інваріанти. Таким чином, всі три закони ньоютонівської динаміки справедливі у всіх інерціальних системах відліку.

§ 4. Чотирьохвектор і інтервал. Простір Міньковського.

Нагадаємо із курсу загальної фізики, що в релятивістській ( не Ньютонівській) механіці, коли швидкістю руху тіл не можна не можна знехтувати порівняно з швидкістю світла, яка згідно ІІ постулату Ейнштейна одинакова у всіх інерціальних системах відліку, справедливі перетворення не Галілея, а Лоренцо (мал. 1.6)

(1.29) (1.30)

Ми бачимо, що при перетвореннях Лоренцо змінюються і координати і час. Причому останні характеристики невіддільні одна від одної є відносними. Але і в релятивістській механіці можна знайти такі величини, співвідношення, які є інваріантними в довільній інерціальній системі відліку.

Першим таким інваріантом є швидкість світла. Нетрудно переконатися із співвідношень (1.29), що другим важливим інваріантом є інтервал події. Його квадрат визначається як:

Отже: (1.31)

Інваріантами, як ми уже також знаємо, з курсу загальної фізики є маса спокою і енергія спокою.

Із останнього співвідношення випливає, що коли кількість руху К в одній інерціальній системі не залежить від часу то вона залишається постійною і в іншій системі відліку К’, поскільки m і константи. Тобто, закон інерції справедливий в усіх інерціальних системах відліку.

Кінетична енергія системи частинок в системі xOy буде:

Остання рівність показує зміну кінетичної енергії при переході від однієї інерціальної системи до іншої. Очевидно також, що якщо кінетична енергія системи в одній інерціальній системі відліку постоянна в часі, то вона буде постійною в часі і в іншій інерціальній системі відліку, якщо система частинок замкнута і між частинками діють тільки пружні сили. Таким чином, закон збереження кінетичної енергії справедливий у всіх інерціальних системах, якщо він справедливий в одній з них. При цьому слід відмітити, що кількість руху ізольованої системи частинок залишається постійною завжди і при недружніх взаємодіях, а кінетична енергія зменшується в цьому випадку на одну і ту ж саму величину в системах xOy і x’O’y’. Це зменшення – інваріант.

Між частинками системи можуть діяти сили, що залежать тільки від віддалі між ними і напрямлені по лінії що їх з’єднують. Тоді кожна конфігурація володіє певною потенціальною енергією U.

Якщо між частинками ізольованої системи відбувається така взаємодія, то закон


Сторінки: 1 2