разрушены.
Быстрое сжатие воздуха перед движущимся с большой скоростью предметом приводит к повышению температуры, которая с нарастанием скорости предмета - увеличивается.
1.8. Шумы.
Наложение большого количества колебаний беспорядочно смешанных одно относительно другого и произвольно изменяющих интенсивность во времени, приводят к сложной форме колебаний. Такие сложные колебания, состоящие из большого числа простых звуков различной тональности, называют шумами. Примерами могут служить шелест листьев в лесу, грохот водопада, шум на улице города. К шумам также можно отнести звуки, выражаемые согласными. Шумы различаются распределением по силе звука, по частоте и продолжительности звучания во времени. Длительное время звучат шумы, создаваемые ветром, падающей воды, морским прибоем. Относительно кратковременны раскаты грома, рокот волн - это низкочастотные шумы. Механические шумы могут вызываться вибрацией твёрдых тел. Возникающие при лопании пузырьков и полостей в жидкости звуки, которые сопровождают процессы кавитации, приводят к кавитационным шумам.
В прикладной акустике изучение шумов проводится в связи с проблемой борьбы с их вредностью, для усовершенствования шумопеленгаторов в гидроакустике, а также для повышения точности измерений в аналоговых и цифровых устройствах обработки информации. Продолжительные сильные шумы (порядка 90 дБ и более) оказывают вредное действие на нервную систему человека, шум морского прибоя или леса - успокаивающее.
1.9. Ультразвуки и инфразвуки.
Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до предельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые человеком звуковые волны с частотами ниже 16 Гц называют инфразвуком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.
Этим неслышимым звукам нашли много применения.
Ультразвуки и инфразвуки имеют очень важную роль и в живом мире. Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы.
Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полете, они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).
Проведённые наблюдения показали, что муравьи так же издают ультразвуковые сигналы с разными частотами в разных ситуациях. Все записанные эти муравьиные звуковые сигналы можно разделить на три группы: "сигнал бедствия", "сигнал агрессии" (во время борьбы) и "пищевые сигналы". Эти сигналы представляют собой кратковременные импульсы, длительностью от 10 до 100 микросекунд. Муравьи издают звуки в сравнительно широком диапазоне частот - от 0,3 до 5 килогерц.
2. Применение звуковых волн
2.1. Звукозапись и фонограф Эдисона
Изобретённый Эдисоном способ звукозаписи получил название механического. Используют его и сейчас, но, конечно, в новом качестве: мембрану, с её низкой чувствительностью заменили высокочувствительные микрофоны с электронными усилителями, а сигнал, преобразованный в механические колебания, записывают на металлической матрице, с которой затем печатают грампластинки. Запись ведут уже не иглой, а специальным резцом. Запись звука в виде борозды переменной глубины была заменена поперечной записью, то есть в виде борозды с поперечными извилинами.
2.2. Звуколокация.
На явлении эхо основан метод определения расстояний до различных предметов и обнаружения их месторасположений. Допустим, что каким-нибудь источником звука испущен звуковой сигнал и зафиксирован момент его испускания. Звук встретил какое-то препятствие, отразился от него, вернулся и был принят приёмником звука. Если при этом был измерен промежуток времени между моментами испускания и приёма, то легко найти и расстояние до препятствия.
По этой формуле можно найти расстояние до отражателя сигнала. Но ведь надо ещё знать, где он находится, в каком направлении от источника сигнал встретил его. Между тем звук распространяется по всем направлениям, и отраженный сигнал мог прийти с разных сторон. Чтобы избежать этой трудности используют не обычный звук, а ультразвук.
Ультразвуковые волны по своей природе такие же, как обычные звуковые волны, но не воспринимаются человеком как звук. Это объясняется тем, что частота колебаний в них больше, чем 20 000 Гц. Такие волны наблюдаются в природе. Есть даже такие живые существа, способные их испускать и принимать. Ультразвуковые волны и притом большой мощности можно создавать с помощью электрических и магнитных методов.
Главная особенность ультразвуковых волн состоит в том, что их можно сделать направленными, распространяющимися по определённому направлению от источника. Благодаря этому по отражению ультразвука можно не только найти расстояние, но и узнать, где находится тот предмет, который их отразил. Так можно, например, измерять глубину моря под кораблем.
Звуколокаторы позволяют обнаруживать и определять местоположение различных повреждений в изделиях, например пустоты, трещины, постороннего включения и др. В медицине ультразвук используют для обнаружения различных аномалий в теле больного - опухолей, искажений формы органов или их частей и т.д. Чем короче длина ультразвуковой волны, тем меньше размеры обнаруживаемых деталей. Ультразвук используется также для лечения некоторых болезней.
2.3. Ультразвуковая обработка.
Ультразвуковые волны так же используют в станках для обработки хрупких и твёрдых материалов.
Основа станка - преобразователь энергии высокочастотных колебаний электрического тока. Ток поступает на обмотку преобразователя от электронного генератора и превращается в энергию механических (ультразвуковых) колебаний той же частоты. К преобразователю присоединён специальный волновод, который, увеличивая амплитуду колебаний, передаёт их