У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


спробувати зробити якісь загальні висновки, дані, записані для окремих дитин, виявляються зовсім хаотичними: одні діти безупинно додавали у вазі, інші безупинно втрачали, а в інших вага те зростав, те знижувався, тобто спостерігалися різкі коливання. При цьому ніякому очевидному зв'язку між цими різними випадками і різними факторами, що досліджувалися, знайти не удалося. Упорядкованість і регулярність легко виявляються лише в середніх значеннях, узятих по великому числу індивідуумів. Тому при використанні загальної кривої середньої ваги як стандарт для судження про розвиток окремого немовляти необхідно виявляти велику обережність.

Винятково важливо враховувати можливі відхилення, щоб основна математична модель визначала не тільки середню вагу, яку варто очікувати при даному віці дитини і при даному режимі харчування, але і дозволяла вимірити наявне відхилення від норми.

Як добре відомо, одним із самих плідних способів опису характеру мінливості є застосування відповідного закону розподілу, що визначає імовірність того, що результат виміру якого-небудь параметра індивідуума, обраного випадковим образом, буде мати будь-яке задане значення або лежати у визначеному інтервалі значень. Такі безупинні параметри, як ріст, вага і т.п., нерідко задовільно описуються кривої нормального, чи гаусового розподілу.

Нормальний розподіл є одним з найпростіших з погляду математики. Крім того, існує ряд теоретичних основ, що дозволяють припускати, що багато розподілів, що зустрічаються на практиці, повинні бути близькі до нормального, і це припущення дійсне часто підтверджується. Цих розумінь цілком достатньо для того, щоб нормальний розподіл зайняв важливе положення в теорії ймовірностей і математичній статистиці.

Для опису дискретних величин у тих випадках, коли мається обмежене число альтернативних спостережень (наприклад, таких, як число дитяти-альбіносів у родині даного складу), може виявитися придатним біноміальний розподіл. Якщо мається п індивідуумів і імовірність того, що який-небудь з них має визначену ознаку, дорівнює р (незалежно від інших індивідуумів), то імовірність спостереження r індивідуумів з даною ознакою має біноміальний розподіл.

Розподіл числа радіоактивних часток, що випускаються за даний проміжок часу деякою великою масою радіоактивної речовини, числа дорожньо-транспортних випадків, що відбуваються за даний проміжок часу за певних умов, чи числа лейкоцитів, що спостерігаються в одному квадраті гемоцитометру, найкраще описується законом Пуассона.

Ми привели всього три найбільш розповсюджених і найбільш прості розподіли з числа зустрічавшихся на практиці, однак з їх допомогою можна охопити разюче велика безліч випадків природної мінливості в біології і медицині, не звертаючи до більш складних описів. Деяке представлення про зміст і можливості теорії розподілів можна почерпнути з книг по теорії ймовірностей (див., наприклад, книгу Феллера) чи математичній статистиці (див., наприклад, книгу Кендалла і Стюарта).

Застосування розподілів ймовірностей - аж ніяк не новий спосіб опису біологічної мінливості. Кетле, що працював спочатку в області астрономії і метеорології, був, очевидно, першим, хто застосував нормальний розподіл для опису біологічного матеріалу (він увів його при вивченні розподілу людей по росту, про що вже говорилося вище). Пізніше Фрэнсис Гальтон широко застосовував криву нормального розподілу при статистичному дослідженні спадковості, і вона зіграла фундаментальну роль у глибокій роботі Карла Пирсона з питань біометрії, написаної наприкінці минулого століття. З тих пір різні типи розподілів почали застосовувати в найрізноманітніших областях біології - у молекулярній біології, таксономії, екології, генетику, психології і т.д.

Як з історичної, так і з логічної точки зору розподілу ймовірностей являють собою просто більш зроблені варіанти математичних моделей. Вони дозволяють звести величезне різноманіття спостережень до одного закону, якому можна охарактеризувати дуже невеликим числом параметрів: двома у випадку нормального розподілу, одним-єдиним у випадку пуасоновського розподілу і т.д. Це дає можливість більш точно описати явища, що змінюються, і полегшує їхнє розуміння.

Власне кажучи це те, що Р. Фишер називав "редукцією даних". Чисельну інформацію можна точно записувати, зберігати, передавати й обговорювати. Потім ці описи можна перетворити до такого виду, що і прийнято розглядати як власне математичну модель, тобто аналог реальної дійсності, наділений такою структурою, що дозволяє застосовувати звичайні методи наукового дослідження. Це означає, що за допомогою моделі виводяться наслідки і прогнози, справедливість її перевіряється за відповідними спостереженнями й у разі потреби в модель вносяться зміни. Перевірка моделей зв'язана зі статистичними методами, що будуть розглядатися в наступному розділі.

Зрозуміло, математичні моделі (навіть вірогідні) часто не задовольняють біологів, що вважають їхній надмірно спрощеними. Для фахівця в області екології сучасні вірогідні моделі конкуренції між видами цілком можуть показатися занадто примітивними. Однак уся справа в тім, що такий підхід дозволяє більш впевнено охопити все різноманіття і складність природи. При використанні сучасних математичних і статистичних методів і обчислювальної техніки метод побудови математичних моделей може бути розвитий до такого ступеня, що з'явиться можливість зробити для біології те, що математична фізика зробила для фізики.

3. Помилкова точність

Калькулятори, що стали в останні роки повсюдно доступними, безсумнівне благо, що, однак, має і негативні сторони. Чи всі розуміють, скільки цифр потрібно залишати при множенні і розподілі на калькуляторі, якщо він показує їхній вісьмох чи навіть дванадцять? І майже всі студенти і навіть аспіранти вважають, що залишати їхній потрібно якнайбільше. Це невірно! Розберемо найпростіший приклад.

Обмірюваний радіус окружності дорівнює 6 м. Знайти її довжину.

Звичайно розраховують: З=2p=2x3,14x6 м=37,68 м. Але чотири вірні цифри - це дуже висока точність, у соті частки відсотка, що не так вуж часто реалізується при вимірах. Відкіля взятися такої високої точності, якщо хоча б одна величина, що входить у формулу, дана з точністю, на


Сторінки: 1 2 3 4