кілька порядків меншої? Адже в нашому прикладі вона виражається всього однією цифрою. Так що коректна відповідь такий: довжина окружності " 38 м. А якщо необхідний дійсно точна відповідь, те і дані в умові задачі повинні бути з відповідним числом знаків, скажемо 6,00 м.
Правила округлення проходять у середній школі. Вони приведені в багатьох книгах, наприклад у класичному "Довіднику по математиці для інженерів і втузів, що учиться," И. Н. Бронштейна і К. А. Семендяева. Але якось так вийшло, що зараз цей маленький розділ (у всякому разі, у курсі математики) школярам не викладають і вуж поготів не згадують у курсах вищої математики у вузах. Ще років двадцять назад учні й інженери широко користалися логарифмічною лінійкою, що давала точність у двох чи три значущі (тобто вірні) цифри й автоматично захищала обчислювача від фіктивної (іноді говорять - ілюзорної) точності, навіть якщо він забував правила округлення. Але рахункову лінійку витиснув технічний прогрес, захист зникла, і "ефект удаваної точності" придбав масштаби епідемії.
Щоб знизити його вплив, потрібно випливати класичним правилам округлення. У них основним поняттям служить число значущих цифр, що відноситься тільки до вимірюваних, тобто випадковим величинам. Воно вважається ліворуч праворуч починаючи з першої ненульової цифри. Наприклад, 0,004080 має чотири, а 4,08x10-3 - три значущі цифри. множник, що має 10 у кратному ступені, не впливає на число значущих цифр, а лише вказує обраний масштаб величини, не приводячи при цьому до фіктивної точності. Ще приклад. Відстань 3,5 км= 3,5x103 м - точна рівність, у якому ліворуч і праворуч по двох значущі цифри. Не так просто обстоїть справа з рівністю 3,5 км= 3500 м. Якщо це усього лише приведення масштабу до інших кратних одиниць - одна справа. Якщо ж треба відбити безпосередній результат виміру - трохи інше. Адже праворуч коштують чотири значущі цифри, а ліворуч їхній дві; тому, відбиваючи результат, краще ставити хвилястий знак наближеної рівності. Неважко відчути різну інформаційну і навіть економічне навантаження в частинах рівності. Число ліворуч має абсолютну точність 50-100 м, а праворуч - 0,5-1 м, від половини до цілого останнього "розподілу". Якщо така висока точність дійсно потрібна при вимірі кілометрових відстаней, то цінність цього результату і вартість його виміру набагато вище, ніж у числа ліворуч.
Нагадаємо головне правило округлення: якщо роблять чи множення розподіл, то в результаті залишають стільки цифр, скільки їхній містить найменш точна з обмірюваних величин, і звичайно зберігають ще одну запасну цифру. Помітимо, що часто плутають число значущих цифр із числом десяткових знаків, вважаючи, що якусь роль грає положення коми в числі. Але кома лише вказує на прийнятий масштаб вимірів і не задає числа значущих цифр. Наприклад, 1,205 км= 1205 м; і в тім і в іншому випадку число значущих цифр дорівнює і, отже, вони записані з однаковою точністю.
Оборотний увага на одні несподівані труднощі. Виявляється, у дуже багатьох навчальних книгах по математиці приведені приклади, у яких точність вимірювальних даних в умові на кілька порядків нижче, ніж точність у рішенні (!). Точність як би здатна виникати нізвідки, і це міцно осідає в підсвідомості учнів. Приведу тільки один приклад з добротного у всіх інших відносинах "Керівництва до рішення задач по теорії ймовірностей і математичній статистиці" В. Е. Гмурмана. (Хоча подібних прикладів можна знайти скількох завгодно в багатьох інших підручниках, ми спеціально взяли книгу по теорії ймовірностей і статистику, що саме і покликана прищеплювати ідеологію випадкових величин.)
(№125). Імовірність появи події в кожнім з 100 незалежних іспитів постійна і дорівнює р=0,8. Знайти імовірність того, що подія з'явиться не менш 75 разів і не більш 90 разів.
Сама задача вирішена в принципі, зрозуміло, правильно. Але точність результату записана чотирма цифрами: шукана імовірність дорівнює 0,8882, тоді як правильної був би запис 0,89. Запис у задачнику має на увазі точність у соті частки відсотка. Відкіля з'являється така точність, якщо в умові імовірність 0,8 задана тільки однією значущою цифрою і тому характеризується точністю в десятки відсотків? Повчально згадати досвіди видатного статистика К. Пирсона: коли симетрична монета підкидалася 12 тисяч разів, то частота падіння її на герб була 0,5012, а коли 24 тисячі разів - 0,5005 (див. "Наука і життя" № 7, 1993 р.). ми бачимо, що навіть при настільки великому числі повторень досвіду невипадковими стають у першому випадку лише дві цифри, а в другому з натяжкою їхній три. У більшості ж інших видів механічних іспитів число повторень набагато нижче, нижче і точність результатів.
- Ну і що? - запитаєте ви. - чи Треба займатися такими дріб'язками, начебто б особливих неприємностей від збереження зайвих цифр не виникає.
Це не так. І не просто тому, що взагалі при аналізі спостережень людина повинна прагнути до істини, а омани можуть завдати шкоди, навіть якщо заздалегідь не завжди ясно який. По-перше, якщо не знати, як правильно округлити результат, на якій цифрі зупинитися, те де гарантія, що ви не відрізаєте і вірні цифри, погіршивши необхідну точність? По-друге, допустимо, ви зберегли зайві, незначні цифри, а результат потрібно збільшити в дуже велике число раз. Тоді випадковий "довесок" чи "недовагомий" приведе до великої помилки, який можна було б уникнути (така ситуація типова для астрономічних задач). По-третє, якщо в якісь документи (опису, звіти, протоколи іспитів)