потраплять незначні цифри, неможливо буде в точності відтворити вихідні величини. Одним словом, освоїти нескладні правила округлення випадкових величин усе-таки випливає.
Висновок.
Події, що спостерігаються нами, (явища) можна підрозділити на наступні три види: достовірні, неможливі і випадкові.
Достовірним називають подія, що обов'язково відбудеться, якщо буде здійснена визначена сукупність умов S. Наприклад, якщо в судині міститься вода при нормальному атмосферному тиску і температурі 20°, то подія «вода в судині знаходиться в рідкому стані» є достовірне. У цьому прикладі задані атмосферний тиск і температура води складають сукупність умов S.
Неможливим називають подія, що свідомо не відбудеться, якщо буде здійснена сукупність умов S. Наприклад, подія «вода в судині знаходиться у твердому стані» свідомо не відбудеться, якщо буде здійснена сукупність умов попереднього приклада.
Випадковим називають подія, що при здійсненні сукупності умов S може або відбутися, або не відбутися. Наприклад, якщо кинута монета, то вона може упасти так, що зверху буде або герб, або напис. Тому подія «при киданні монети випав «герб»—випадкове. Кожна випадкова подія, зокрема випадання «герба», є наслідок дії дуже багатьох випадкових причин (у нашому прикладі: сила, з яким кинута монета, форма монети і багато хто інші). Неможливо врахувати вплив на результат усіх цих причин, оскільки число їхній дуже велике і закони їхньої дії невідомі. Тому теорія ймовірностей не ставить перед собою задачу пророчити, відбудеться одинична чи подія ні, — вона просто не в силах це зробити.
По-іншому обстоїть справа, якщо розглядаються випадкові події, що можуть багаторазово спостерігатися при здійсненні тих самих умов S, тобто якщо мова йде про масові однорідні випадкові події. Виявляється, що досить велике число однорідних випадкових подій незалежно від їхньої конкретної природи підкоряється визначеним закономірностям, а саме вірогідним закономірностям. Установленням цих закономірностей і займається теорія ймовірностей.
Отже, предметом теорії ймовірностей є вивчення вірогідних закономірностей масових однорідних випадкових подій.
Знання закономірностей, яким підкоряються масові випадкові події, дозволяє передбачати, як ці події будуть протікати. Наприклад, хоча, як було вже сказане, не можна наперед визначити результат одного кидання монети, але можна пророчити, причому з невеликою погрішністю, число появ «герба», якщо монета буде кинуте досить велике число раз. При цьому передбачається, звичайно, що монету кидають у тих самих умовах.
Методи теорії ймовірностей широко застосовуються в різних галузях природознавства і техніки: у теорії надійності, теорії масового обслуговування, у теоретичній фізиці, геодезії, астрономії, теорії стрілянини, теорії помилок спостережень, теорії автоматичного керування, загальної теорії зв'язку й у багатьох інших теоретичних і прикладних науках. Теорія ймовірностей служить також для обґрунтування математичної і прикладної статистики, що у свою чергу використовується при плануванні й організації виробництва, при аналізі технологічних процесів, попереджувальному і приймальному контролі якості продукції і для багатьох інших цілей.
В останні роки методи теорії ймовірностей усе ширше і ширше проникають у різні області науки і техніки, сприяючи їхньому прогресу.
Список використаної літератури.
Вентцель Е.С., Овчаров Л. А. Теория вероятностей и ее инженерные приложения. - М.: Гл.ред. ФМЛ, 1988. - 480 с.
Мостеллер Ф., Рурке Р., Томас Дж. Вероятность. – под ред. И.М. Яглома. – М., Издательство «Мир», 1969. – 426 с.
Груман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. Изд. 5-е перераб. И доп. М., «Высшая школа», 1977.
Венцель Е.С., Теория вероятностей, М., «Наука», 1964.
Розанов Ю.А., Лекции по теории вероятностей, М., «Наука», 1968.