У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент


інтегральну оцінку якості стану ОК St.

Блок вибору дії або, надалі, блок прийняття рішень (БПР) реалізує процедуру ухвалення рішення, засновану на аналізі поточної ситуації, цільових функцій, змісту БЗ, а також оцінки поточного значення оцінки St.

Блок визначення часу ухвалення рішення визначає глибину перегляду БЗ у залежності від поточної оцінки St. Чим вище значення St, тим більше образів (у порядку спадання модулю їхньої ваги) може врахувати КС при ухваленні рішення, тим менше темп прийняття рішень.

У КС можуть бути засоби для апріорного аналізу наслідків альтернативних дій, що вибираються на декілька кроків вперед.

Такий у самих загальних рисах алгоритм керування, реалізований КС у СППР. Основні властивості процесу керування складаються в тому, що КС автоматично накопичує емпіричні знання про властивості пред'явленого їй об'єкта керування і приймає рішення, спираючись на накопичені знання. Якість керування росте в міру збільшення обсягу накопичених знань. Зауважимо також, що керування складається не в тому, що КС реагує на вхідну інформацію, а в тому, що КС постійно активно шукає можливий у поточних умовах засіб поліпшити стан ОК. Тим самим КС СППР має внутрішню активність.

При створенні додатків може бути доцільним використання КС СППР для керування тільки в тих областях простору ознак, у котрих раніше використовувані методи були неефективними. Іншими словами, корисно розділити ознаковий простір на дві області: на область, для якої є апріорна інформація про властивості ОК, і в який можна застосувати систему керування, і на область, у котрої немає інформації про властивості ОК, де потрібно адаптація в реальному часі керування.

Біологічний нейрон

На мал. 3.1.1 [4], поданий у спрощеному виді біологічний нейрон. Схематично його можна розділити на трьох частини: тіло клітини, що містить ядро і клітинну протоплазму; дендрити - деревоподібні відростки, які служать входами нейрона; аксон, або нервове волокно, - єдиний вихід нейрона, що являє собою довгий циліндричний відросток. Для опису формальної моделі нейрона виділимо такі факти:

Мал. 3.1.1

У будь-який момент можливі лише два стани волокна: наявність імпульсу і його відсутність, так називаний закон «усе або нічого». Передача вихідного сигналу з аксона попереднього нейрона на дендриты або прямо на тіло такого нейрона здійснюється в спеціальних утвореннях - синапсах. Вхідні сигнали підсумовуються із синаптичними затримками й у залежності від сумарного потенціалу генерується або ні вихідний імпульс - спайк.

Формальна модель нейрона.

Вперше формальна логічна модель нейрона була введена Маккалоком і Питтсом [3] у 1948 році та тих пір було запропоновано величезна кількість моделей. Але усі вони призначені для рішення в основному задач розпізнавання і класифікації образів. Можна зазначити цілий ряд основних відмінностей запропонованої в даній роботі моделі і вже існуючих. По-перше, у класичних моделях завжди є присутнім «вчитель» або «супервізор», що підбудовує параметри мережі по визначеному алгоритму, запропонований же нейрон повинний підбудовуватися «сам» у залежності від «побаченої» їм послідовності вхідних векторів. Формально говорячи, при роботі нейрона повинна використовуватися тільки інформація з його входів. По-друге, у запропонованій моделі немає речовинних важелів і зваженої сумації по цих вагах, що є великим плюсом при створенні нейрочипу і модельних обчислень, оскільки цілочисленна арифметика виконується завжди швидше, ніж раціональна і простіше в реалізації. Головна ж відмінність запропонованої моделі складається в цілі застосування. C її допомогою вирішуються всі задачі керуючої системи: формування і розпізнавання образів (ФРО), розпізнавання і запам'ятовування закономірностей (БЗ), аналіз інформації БЗ і вибір дій (БПР), у відмінності від класичних моделей, де вирішується тільки перша задача.

Система побудови і дослідження нейронных мереж (СПДНМ).

Для моделювання на ЕОМ компонентів КС, сконструйованих із нейронів усвідомлена необхідність у спеціальному інструменті, що дозволяє за допомогою зручного графічного інтерфейсу створювати бібліотеки шаблонів блоків, будувати мережі з блоків, побудованих по шаблонах, і прораховувати мережу з можливістю перегляду проміжних станів мережі, збору й аналізу статистики про роботу мережі з метою налагодження.

При створенні (або виборі) інструмента використовувалися такі критерії:

відкритість, або специфікація і реалізація інтерфейсу і (процедур обробки) форматів даних, що дозволяють проводити модифікацію і нарощування функціональності системи не торкаючись ядра системи і з мінімальними витратами на модифікацію зв'язаних компонентів, іншими словами, мінімізація зв'язків між компонентами;

гнучкість, можливості по конструюванню як можна більшої кількості класів формальних моделей нейронів і мереж під самі різноманітні додатки від моделей КС супутників і космічних апаратів до систем підтримки прийняття рішень і систем прогнозування курсу цінних паперів;

багатоплатформеність, максимальна незалежність від операційної системи;

зручність і пристосованість до моделювання саме систем підтримки прийняття рішень, простота у використанні і спроможність ефективно працювати на слабких ресурсах ЕОМ (класу персональних комп'ютерів).

Аналіз існуючих у наявності або доступних СППР і інших систем (наприклад, LabView або систем із класичними НМ), тим або іншою чином задовольняючих першим трьом критеріям, показав, що усі вони є або великоваговими, або занадто дорогими, або дуже погано пристосовані до моделювання систем керування з формальною моделлю нейрона. Таким чином, виникнула необхідність в інструменті для науково-дослідних цілей, який би дозволяв перевіряти ідеї створення СППР і створювати прототипи КС на НМ.

Мал. 5.1. Загальна схема ядра СПДНМ.

На приведеній схемі (рис 5.1) [1] зазначені основні класи об'єктів ядра системи і їхня взаємодія. Стрілками показані потоки даних при роботі системи. Кожному з основних блоків КС відповідає свій блок у системі. Чотири блоки: ФРО, БЗ, БОС і БПР складають КС. З формальної моделі НМ випливає, що блок - це ієрархічна структура, у якій елементи


Сторінки: 1 2 3