У нас: 141825 рефератів
Щойно додані Реферати
Тор 100
|
|
Реферат - Використання нейромережевих технологій при створенні систем підтримки прийняття рішень (СППР). 10
інтегральну оцінку якості стану ОК St.
Блок вибору дії або, надалі, блок прийняття рішень (БПР) реалізує процедуру ухвалення рішення, засновану на аналізі поточної ситуації, цільових функцій, змісту БЗ, а також оцінки поточного значення оцінки St. Блок визначення часу ухвалення рішення визначає глибину перегляду БЗ у залежності від поточної оцінки St. Чим вище значення St, тим більше образів (у порядку спадання модулю їхньої ваги) може врахувати КС при ухваленні рішення, тим менше темп прийняття рішень. У КС можуть бути засоби для апріорного аналізу наслідків альтернативних дій, що вибираються на декілька кроків вперед. Такий у самих загальних рисах алгоритм керування, реалізований КС у СППР. Основні властивості процесу керування складаються в тому, що КС автоматично накопичує емпіричні знання про властивості пред'явленого їй об'єкта керування і приймає рішення, спираючись на накопичені знання. Якість керування росте в міру збільшення обсягу накопичених знань. Зауважимо також, що керування складається не в тому, що КС реагує на вхідну інформацію, а в тому, що КС постійно активно шукає можливий у поточних умовах засіб поліпшити стан ОК. Тим самим КС СППР має внутрішню активність. При створенні додатків може бути доцільним використання КС СППР для керування тільки в тих областях простору ознак, у котрих раніше використовувані методи були неефективними. Іншими словами, корисно розділити ознаковий простір на дві області: на область, для якої є апріорна інформація про властивості ОК, і в який можна застосувати систему керування, і на область, у котрої немає інформації про властивості ОК, де потрібно адаптація в реальному часі керування. Біологічний нейрон На мал. 3.1.1 [4], поданий у спрощеному виді біологічний нейрон. Схематично його можна розділити на трьох частини: тіло клітини, що містить ядро і клітинну протоплазму; дендрити - деревоподібні відростки, які служать входами нейрона; аксон, або нервове волокно, - єдиний вихід нейрона, що являє собою довгий циліндричний відросток. Для опису формальної моделі нейрона виділимо такі факти: Мал. 3.1.1 У будь-який момент можливі лише два стани волокна: наявність імпульсу і його відсутність, так називаний закон «усе або нічого». Передача вихідного сигналу з аксона попереднього нейрона на дендриты або прямо на тіло такого нейрона здійснюється в спеціальних утвореннях - синапсах. Вхідні сигнали підсумовуються із синаптичними затримками й у залежності від сумарного потенціалу генерується або ні вихідний імпульс - спайк.Формальна модель нейрона. Вперше формальна логічна модель нейрона була введена Маккалоком і Питтсом [3] у 1948 році та тих пір було запропоновано величезна кількість моделей. Але усі вони призначені для рішення в основному задач розпізнавання і класифікації образів. Можна зазначити цілий ряд основних відмінностей запропонованої в даній роботі моделі і вже існуючих. По-перше, у класичних моделях завжди є присутнім «вчитель» або «супервізор», що підбудовує параметри мережі по визначеному алгоритму, запропонований же нейрон повинний підбудовуватися «сам» у залежності від «побаченої» їм послідовності вхідних векторів. Формально говорячи, при роботі нейрона повинна використовуватися тільки інформація з його входів. По-друге, у запропонованій моделі немає речовинних важелів і зваженої сумації по цих вагах, що є великим плюсом при створенні нейрочипу і модельних обчислень, оскільки цілочисленна арифметика виконується завжди швидше, ніж раціональна і простіше в реалізації. Головна ж відмінність запропонованої моделі складається в цілі застосування. C її допомогою вирішуються всі задачі керуючої системи: формування і розпізнавання образів (ФРО), розпізнавання і запам'ятовування закономірностей (БЗ), аналіз інформації БЗ і вибір дій (БПР), у відмінності від класичних моделей, де вирішується тільки перша задача. Система побудови і дослідження нейронных мереж (СПДНМ). Для моделювання на ЕОМ компонентів КС, сконструйованих із нейронів усвідомлена необхідність у спеціальному інструменті, що дозволяє за допомогою зручного графічного інтерфейсу створювати бібліотеки шаблонів блоків, будувати мережі з блоків, побудованих по шаблонах, і прораховувати мережу з можливістю перегляду проміжних станів мережі, збору й аналізу статистики про роботу мережі з метою налагодження. При створенні (або виборі) інструмента використовувалися такі критерії: відкритість, або специфікація і реалізація інтерфейсу і (процедур обробки) форматів даних, що дозволяють проводити модифікацію і нарощування функціональності системи не торкаючись ядра системи і з мінімальними витратами на модифікацію зв'язаних компонентів, іншими словами, мінімізація зв'язків між компонентами; гнучкість, можливості по конструюванню як можна більшої кількості класів формальних моделей нейронів і мереж під самі різноманітні додатки від моделей КС супутників і космічних апаратів до систем підтримки прийняття рішень і систем прогнозування курсу цінних паперів; багатоплатформеність, максимальна незалежність від операційної системи; зручність і пристосованість до моделювання саме систем підтримки прийняття рішень, простота у використанні і спроможність ефективно працювати на слабких ресурсах ЕОМ (класу персональних комп'ютерів). Аналіз існуючих у наявності або доступних СППР і інших систем (наприклад, LabView або систем із класичними НМ), тим або іншою чином задовольняючих першим трьом критеріям, показав, що усі вони є або великоваговими, або занадто дорогими, або дуже погано пристосовані до моделювання систем керування з формальною моделлю нейрона. Таким чином, виникнула необхідність в інструменті для науково-дослідних цілей, який би дозволяв перевіряти ідеї створення СППР і створювати прототипи КС на НМ. Мал. 5.1. Загальна схема ядра СПДНМ. На приведеній схемі (рис 5.1) [1] зазначені основні класи об'єктів ядра системи і їхня взаємодія. Стрілками показані потоки даних при роботі системи. Кожному з основних блоків КС відповідає свій блок у системі. Чотири блоки: ФРО, БЗ, БОС і БПР складають КС. З формальної моделі НМ випливає, що блок - це ієрархічна структура, у якій елементи |