У нас: 141825 рефератів
Щойно додані Реферати Тор 100
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент



Курсова робота - Фінансові посередники
66
Більш того, зміна значення навіть однієї величини в системі у більшій або меншій мірі відіб'ється на результатах відповідної операції. Це зумовлює той факт, що подібні системи можуть і повинні бути об'єктом застосування кількісного фінансово-управлінського аналізу.

Кількісний фінансовий аналіз застосовується як в умовах визначеності, так і невизначеності. У першому випадку передбачається, що дані для аналізу завчасно відомі й фіксовані. Наприклад, при укладенні звичайного договору комерційної концесії можуть бути однозначно оговорені всі параметри. Аналіз помітно ускладнюється, коли доводиться враховувати невизначеність – динаміку грошового ринку (рівень відсоткової ставки, коливання валютного курсу), поведінку контрагента тощо.

У загальному вигляді під відсотковими грошима (interest) розуміють абсолютну величину доходів від надання коштів у борг у будь-якій формі: надання позики, продаж товару в кредит, розміщення грошей на депозитному рахунку, облік векселю, придбання цінних паперів, операції лізингу, факторингу, форфейтингу, концесії тощо. Якого б вигляду або походження не набували б відсотки, це завжди конкретний прояв такої економічної категорії як позиковий процент.

Рента описується наступними параметрами: член ренти (rent) – розмір окремого платежу, період ренти (rent period, payment period) – часовий інтервал між двома послідовними платежами, строк ренти (term) – час від початку першого періоду ренти до кінця останнього, відсоткова ставка.

За кількістю виплат членів ренти протягом року ренти поділяються на річні (виплата раз на рік) та p-строкові (p – кількість виплат на рік). При аналізі виробничих інвестицій іноді застосовують ренти з періодами, що перевищують рік. За кількістю разів нарахування відсотків протягом року розрізняють: ренти з щорічним нарахуванням, з нарахуванням m разів на рік, з неперервним нарахуванням. Моменти нарахування відсотків необов'язково співпадають з моментами виплат членів ренти. Однак розрахунки помітно спрощуються, якщо два вказаних моменти збігаються.

За ймовірністю виплат ренти поділяються на безспірні (certain) та умовні (contingent). Безспірні ренти підлягають безумовній сплаті; число членів такої ренти завчасно відоме. В свою чергу, сплата умовної ренти ставиться у залежність від настання певного випадку; число її членів завчасно невідоме. За кількістю членів розрізняють ренти з кінцевим числом членів, або обмежені ренти (їх термін завчасно обумовлено), та безкінечні, або вічні ренти (perpetuity). З вічною рентою стикаються на практиці в низці довгострокових операцій, коли передбачається, що період функціонування аналізованої системи або строк операції вельми тривалий і не оговорений конкретними датами. В якості вічної ренти іноді логічно розглядати й сплату роялті за більшістю концесійних угод і договорів типу ВОТ, з огляду на їх довгостроковий характер.

За співвідношенням початку строку ренти і деякого моменту часу, що попереджує початок ренти (наприклад, початок дії контракту або дата його укладення), ренти поділяють на негайні та відстрочені (deferred). Приклад відстроченої ренти: погашення боргу в розстрочку після пільгового періоду. Дуже важливою є відмінність за моментом сплати платежів у межах періоду ренти. Якщо платежі здійснюються наприкінці цих періодів, то відповідні ренти називають звичайними або постнумерандо; якщо платежі проводяться на початку періодів, їх відповідно називають пренумерандо. Іноді контракти передбачають платежі і надходження коштів у середині періодів.

Для нарахування відсотків можна застосовувати постійну базу нарахування та послідовно змінювану (прості і складні відсоткові ставки). Важливим є вибір принципу розрахунку відсоткових коштів: від сучасного до майбутнього і, навпаки, від майбутнього до сучасного (ставки нарощування і дисконтні ставки). У фінансовій літературі відсотки, одержані за ставкою нарощування, прийнято називати декурсивними, за обліковою ставкою – антисипативними. Ставки можна також розділити на фіксовані та плаваючі (floating).

У практичних розрахунках застосовують, так звані, дискретні відсотки, тобто відсотки, що нараховуються за фіксовані інтервали часу (рік, півріччя і т.п.). Інакше кажучи, час розглядається як дискретна змінна. В деяких випадках – у доказах і аналітичних фінансових розрахунках, пов'язаних з процесами, котрі можна розглядати як неперервні, у загальних теоретичних розробках і значно рідше на практиці – виникає необхідність у застосуванні неперервних відсотків (continuous interest), коли нарощування або дисконтування проводиться безперервно, за безкінечно малі проміжки часу.

У переважній кількості практичних випадків аналіз потоку платежів передбачає розрахунок однієї з двох узагальнюючих характеристик: нарощеної суми або сучасної вартості потоку. Нарощена сума (amount of cash flows) – сума всіх членів потоку платежів із нарахованими на них до кінця строку відсотками. Під сучасною вартістю потоку платежів (present value of cash flows) розуміють суму всіх його членів, дисконтова них на початок строку ренти або деяких попередній момент часу. (В старій російській фінансовій літературі аналогічний за змістом показник називався справжньою ціною платежів.)

Нарощена сума може представляти собою загальну суму накопленої заборгованості до кінця терміну, кінцевий об'єм інвестицій, накоплений грошовий резерв і т. ін.. У свою чергу, сучасна вартість характеризує приведені до початку здійснення проекту інвестиційні витрати, сумарний капіталізований дохід або чистий приведений прибуток від реалізації проекту тощо.

Як було показано вище, фінансова рента описується набором основних параметрів: R – член ренти, n – строк дії угоди, і – відсоткова ставка, – та додатковими параметрами p, m. Однак, при розробці контрактів і умов операції можуть виникнути випадки, коли задається одна з двох узагальнюючих характеристик: S – нарощена сума грошових потоків (сума в кінці строку), або A – сучасна вартість майбутніх потоків коштів, – і необхідно розрахувати значення невідомого параметру.

Розглянемо загальну постановку задачі. Припустимо, є ряд платежів Rt, які сплачуються через час nt після деякого початкового моменту. Загальний строк виплат – п років. Необхідно визначити нарощену на


Сторінки: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15